Designing deep eutectic solvents for efficient CO2 capture: A data-driven screening approach

共晶体系 吸收能力 吸收(声学) 计算机科学 过程(计算) 随机森林 人工智能 机器学习 生物系统 材料科学 化学 工程类 化学工程 有机化学 合金 复合材料 生物 操作系统
作者
Dmitriy M. Makarov,Yu. A. Fadeeva,Vasiliy A. Golubev,A. M. Kolker
出处
期刊:Separation and Purification Technology [Elsevier BV]
卷期号:325: 124614-124614 被引量:30
标识
DOI:10.1016/j.seppur.2023.124614
摘要

The continuous increase in carbon dioxide emissions into the atmosphere necessitates the exploration of new, efficient, and environmentally friendly systems for CO2 capture. Deep eutectic solvents (DESs), known for their unique physicochemical properties, have shown promising potential for replacing traditional absorbents due to their strong CO2 absorption capacity. In this study, we propose a two-step screening process, employing a data-driven approach, to design novel DESs as CO2 absorbents. At the initial screening stage, machine learning methods were used to develop models capable of predicting the CO2 absorption capacity of DES. To enhance the chemical diversity within the training set, we combined data on the CO2 absorption capacity of DESs (162 structures) and ILs (232 structures). Among the models developed, two demonstrated superior performance. The first one, called transformer convolutional neural fingerprint (TransCNF), and the second one, Random Forest (RFR) with extended connectivity fingerprint (ECFP), outperformed the others. To gain insights into the RFR/ECFP model, we employed the SHAP method and identified 30 significant descriptors. By comparing the contributions of these descriptors with the experimental observations, we found that the developed model accurately represented the influence of the structure of DESs on their CO2 absorption capacity. Thus, the model exhibited reliable performance. At the second stage of the screening process, we employed the Redlich-Kister thermodynamic model together with the machine learning model to predict the melting temperature of the DESs. Based on the screening results, we found that 1447 DESs with high CO2 absorption ability remained liquid at room temperature, which made them promising candidates for CO2 capture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
科研通AI5应助wyl采纳,获得10
2秒前
hhh发布了新的文献求助10
2秒前
所所应助小白采纳,获得10
2秒前
4秒前
zhaonana完成签到 ,获得积分10
4秒前
科研通AI5应助daxiooo11采纳,获得10
6秒前
小米超辣发布了新的文献求助10
6秒前
科目三应助猴儿采纳,获得10
6秒前
7秒前
万能图书馆应助euphoria采纳,获得10
8秒前
9秒前
10秒前
zxy发布了新的文献求助10
10秒前
优雅小霜发布了新的文献求助10
10秒前
judy发布了新的文献求助10
11秒前
谢雨晨发布了新的文献求助10
13秒前
15秒前
MchemG应助hhh采纳,获得10
15秒前
科研通AI5应助heyheybaby采纳,获得10
15秒前
小羊几点啦完成签到,获得积分10
16秒前
科研通AI5应助Cloud采纳,获得30
16秒前
Elin完成签到,获得积分10
17秒前
大个应助asdfghjkl采纳,获得10
17秒前
17秒前
euphoria发布了新的文献求助10
19秒前
小徐801完成签到,获得积分10
21秒前
cc给cc的求助进行了留言
21秒前
21秒前
JamesPei应助小米超辣采纳,获得10
21秒前
22秒前
jiayou完成签到,获得积分10
22秒前
健壮傲芙发布了新的文献求助10
23秒前
23秒前
琪琪完成签到,获得积分10
27秒前
橙子发布了新的文献求助10
27秒前
温暖芷文发布了新的文献求助30
28秒前
科研通AI5应助XLC采纳,获得10
29秒前
琪琪发布了新的文献求助10
30秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799816
求助须知:如何正确求助?哪些是违规求助? 3345094
关于积分的说明 10323610
捐赠科研通 3061657
什么是DOI,文献DOI怎么找? 1680474
邀请新用户注册赠送积分活动 807093
科研通“疑难数据库(出版商)”最低求助积分说明 763462