Structural Attention Graph Neural Network for Diagnosis and Prediction of COVID-19 Severity

计算机科学 工作量 图形 2019年冠状病毒病(COVID-19) 回归 人工智能 工作流程 人工神经网络 模式识别(心理学) 数据挖掘 机器学习 疾病 医学 理论计算机科学 病理 数学 统计 数据库 操作系统 传染病(医学专业)
作者
Yanbei Liu,Henan Li,Tao Luo,Changqing Zhang,Zhitao Xiao,Ying Wei,Yaozong Gao,Feng Shi,Fei Shan,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (2): 557-567 被引量:14
标识
DOI:10.1109/tmi.2022.3226575
摘要

With rapid worldwide spread of Coronavirus Disease 2019 (COVID-19), jointly identifying severe COVID-19 cases from mild ones and predicting the conversion time (from mild to severe) is essential to optimize the workflow and reduce the clinician's workload. In this study, we propose a novel framework for COVID-19 diagnosis, termed as Structural Attention Graph Neural Network (SAGNN), which can combine the multi-source information including features extracted from chest CT, latent lung structural distribution, and non-imaging patient information to conduct diagnosis of COVID-19 severity and predict the conversion time from mild to severe. Specifically, we first construct a graph to incorporate structural information of the lung and adopt graph attention network to iteratively update representations of lung segments. To distinguish different infection degrees of left and right lungs, we further introduce a structural attention mechanism. Finally, we introduce demographic information and develop a multi-task learning framework to jointly perform both tasks of classification and regression. Experiments are conducted on a real dataset with 1687 chest CT scans, which includes 1328 mild cases and 359 severe cases. Experimental results show that our method achieves the best classification (e.g., 86.86% in terms of Area Under Curve) and regression (e.g., 0.58 in terms of Correlation Coefficient) performance, compared with other comparison methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助yyy采纳,获得10
刚刚
是小孙呀发布了新的文献求助30
刚刚
情怀应助小龙先生采纳,获得10
刚刚
琳琳发布了新的文献求助10
1秒前
1秒前
百里守约完成签到 ,获得积分10
1秒前
情怀应助自由马儿采纳,获得10
3秒前
3秒前
在水一方应助神勇的夜山采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
冰红茶完成签到,获得积分10
4秒前
4秒前
球球发布了新的文献求助10
5秒前
6秒前
NexusExplorer应助儒雅的白桃采纳,获得10
6秒前
WangVera完成签到,获得积分10
7秒前
9秒前
10秒前
Jiaocm完成签到,获得积分10
11秒前
yyy发布了新的文献求助10
11秒前
脑洞疼应助难过飞瑶采纳,获得30
13秒前
NexusExplorer应助舒心梦菲采纳,获得10
15秒前
victory_liu完成签到,获得积分10
15秒前
bkagyin应助左岸采纳,获得10
15秒前
sunny心晴完成签到 ,获得积分10
15秒前
Vivian完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
烟花应助203采纳,获得10
16秒前
YeSun完成签到,获得积分10
16秒前
17秒前
18秒前
CXSCXD完成签到,获得积分10
20秒前
研友_n2QE4L完成签到,获得积分10
21秒前
李爱国应助自由马儿采纳,获得10
21秒前
1233完成签到 ,获得积分10
21秒前
Keepsome完成签到,获得积分10
22秒前
林岚发布了新的文献求助10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5051061
求助须知:如何正确求助?哪些是违规求助? 4278621
关于积分的说明 13337056
捐赠科研通 4093748
什么是DOI,文献DOI怎么找? 2240502
邀请新用户注册赠送积分活动 1247091
关于科研通互助平台的介绍 1176104