亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DAGAM: a domain adversarial graph attention model for subject-independent EEG-based emotion recognition

计算机科学 脑电图 概化理论 人工智能 图形 模式识别(心理学) 联营 机器学习 语音识别 理论计算机科学 心理学 数学 统计 精神科
作者
Tao Xu,Wang Dang,Jiabao Wang,Yun Zhou
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (1): 016022-016022 被引量:28
标识
DOI:10.1088/1741-2552/acae06
摘要

Abstract Objective. Due to individual differences in electroencephalogram (EEG) signals, the learning model built by the subject-dependent technique from one person’s data would be inaccurate when applied to another person for emotion recognition. Thus, the subject-dependent approach for emotion recognition may result in poor generalization performance when compared to the subject-independent approach. However, existing studies have attempted but have not fully utilized EEG’s topology, nor have they solved the problem caused by the difference in data distribution between the source and target domains. Approach. To eliminate individual differences in EEG signals, this paper proposes the domain adversarial graph attention model, a novel EEG-based emotion recognition model. The basic idea is to generate a graph using biological topology to model multichannel EEG signals. Graph theory can topologically describe and analyze EEG channel relationships and mutual dependencies. Then, unlike other graph convolutional networks, self-attention pooling is used to benefit from the extraction of salient EEG features from the graph, effectively improving performance. Finally, following graph pooling, the domain adversarial model based on the graph is used to identify and handle EEG variation across subjects, achieving good generalizability efficiently. Main Results. We conduct extensive evaluations on two benchmark data sets (SEED and SEED IV) and obtain cutting-edge results in subject-independent emotion recognition. Our model boosts the SEED accuracy to 92.59% (4.06% improvement) with the lowest standard deviation (STD) of 3.21% (2.46% decrements) and SEED IV accuracy to 80.74% (6.90% improvement) with the lowest STD of 4.14% (3.88% decrements), respectively. The computational complexity is drastically reduced in comparison to similar efforts (33 times lower). Significance. We have developed a model that significantly reduces the computation time while maintaining accuracy, making EEG-based emotion decoding more practical and generalizable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiuer7应助小药丸采纳,获得10
6秒前
隐形曼青应助小药丸采纳,获得10
18秒前
Jerry110发布了新的文献求助10
23秒前
Omni完成签到,获得积分10
25秒前
qiuer7应助小药丸采纳,获得10
30秒前
李健的小迷弟应助小药丸采纳,获得10
39秒前
45秒前
Jerry110发布了新的文献求助10
48秒前
51秒前
我是老大应助小药丸采纳,获得10
59秒前
Jerry110关注了科研通微信公众号
1分钟前
mlzmlz完成签到,获得积分0
1分钟前
zq00完成签到,获得积分10
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
张贵虎发布了新的文献求助10
1分钟前
1分钟前
大模型应助GQ采纳,获得10
2分钟前
2分钟前
吃了吃了完成签到,获得积分10
2分钟前
2分钟前
不安青牛应助wang采纳,获得10
2分钟前
sparklgx发布了新的文献求助10
2分钟前
曾令聪完成签到,获得积分10
2分钟前
杨好圆完成签到,获得积分10
2分钟前
wang完成签到,获得积分10
2分钟前
冷静的鸿煊完成签到,获得积分10
3分钟前
3分钟前
orixero应助科研通管家采纳,获得10
3分钟前
充电宝应助科研通管家采纳,获得10
3分钟前
打打应助科研通管家采纳,获得10
3分钟前
orixero应助科研通管家采纳,获得10
3分钟前
超级mxl完成签到,获得积分10
3分钟前
4分钟前
4分钟前
shaylie完成签到 ,获得积分10
4分钟前
超级mxl发布了新的文献求助10
4分钟前
4分钟前
艾米完成签到,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Revision of the Australian Thynnidae and Tiphiidae (Hymenoptera) 500
Instant Bonding Epoxy Technology 500
Pipeline Integrity Management Under Geohazard Conditions (PIMG) 500
Methodology for the Human Sciences 500
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4358417
求助须知:如何正确求助?哪些是违规求助? 3860786
关于积分的说明 12043656
捐赠科研通 3502495
什么是DOI,文献DOI怎么找? 1922199
邀请新用户注册赠送积分活动 964569
科研通“疑难数据库(出版商)”最低求助积分说明 864003