Machine learning-based radiomics analysis for predicting local recurrence of primary dermatofibrosarcoma protuberans after surgical treatment

医学 一致性 无线电技术 隆突性皮肤纤维肉瘤 回顾性队列研究 随机森林 放射科 核医学 外科 人工智能 内科学 计算机科学 病理
作者
Cuixiang Cao,Zhilong Yi,Mingwei Xie,Yang Xie,Xin Tang,Bin Tu,Yifeng Gao,Miaojian Wan
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:186: 109737-109737 被引量:2
标识
DOI:10.1016/j.radonc.2023.109737
摘要

Dermatofibrosarcoma protuberans (DFSP) is characterized by locally invasive growth patterns and high local recurrence rates. Accurately identifying patients with high local recurrence risk may benefit patients during follow-up and has potential value for making treatment decisions. This study aimed to investigate whether machine learning-based radiomics models could accurately predict the local recurrence of primary DFSP after surgical treatment.This retrospective study included a total of 146 patients with DFSP who underwent MRI scans between 2010 and 2016 from two different institutions: institution 1 (n = 104) for the training set and institution 2 (n = 42) for the external test set. Three radiomics random survival forest (RSF) models were developed using MRI images. Additionally, the performance of the Ki67 index was compared with the three RSF models in the external validation set.The average concordance index (C-index) scores of the RSF models based on fat-saturation T2W (FS-T2W) images, fat-saturation T1W with gadolinium contrast (FS-T1W + C) images, and both FS-T2W and FS-T1W + C images from 10-fold cross-validation in the training set were 0.855 (95% CI: 0.629, 1.00), 0.873 (95% CI: 0.711, 1.00), and 0.875 (95% CI: 0.688, 1.00), respectively. In the external validation set, the C-indexes of the three trained RSF models were higher than that of the Ki67 index (0.838, 0.754, and 0.866 vs. 0.601, respectively).Random survival forest models developed using radiomics features derived from MRI images were proven helpful for accurate prediction of local recurrence of primary DFSP after surgical treatment and showed better predicting performance than the Ki67 index.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小二郎应助东方采纳,获得10
1秒前
1秒前
xh关闭了xh文献求助
2秒前
lala发布了新的文献求助10
5秒前
斯文败类应助guojingjing采纳,获得10
5秒前
6秒前
6秒前
6秒前
李爱国应助懦弱的吐司采纳,获得10
6秒前
ding应助jason采纳,获得10
11秒前
忐忑的蛋糕完成签到,获得积分10
12秒前
12秒前
12秒前
yifan326发布了新的文献求助10
13秒前
guojingjing发布了新的文献求助10
16秒前
东北师范大学完成签到,获得积分10
17秒前
天天快乐应助General采纳,获得10
17秒前
刻苦的长颈鹿完成签到,获得积分10
17秒前
白日梦发布了新的文献求助10
18秒前
咖啡豆完成签到,获得积分10
19秒前
闪闪含巧完成签到,获得积分10
23秒前
Aaron完成签到 ,获得积分0
26秒前
Jnest发布了新的文献求助10
27秒前
30秒前
30秒前
33秒前
NMR完成签到,获得积分10
33秒前
Yi羿完成签到 ,获得积分10
33秒前
34秒前
wucl1990发布了新的文献求助10
34秒前
小鹿斑比发布了新的文献求助10
35秒前
fwstu发布了新的文献求助30
37秒前
赵峰发布了新的文献求助10
39秒前
41秒前
科研通AI5应助小鹿斑比采纳,获得10
43秒前
fang完成签到,获得积分10
43秒前
可爱的函函应助哇咔咔采纳,获得10
44秒前
BaiX发布了新的文献求助10
44秒前
45秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824301
求助须知:如何正确求助?哪些是违规求助? 3366627
关于积分的说明 10441518
捐赠科研通 3085832
什么是DOI,文献DOI怎么找? 1697607
邀请新用户注册赠送积分活动 816410
科研通“疑难数据库(出版商)”最低求助积分说明 769640