Graphene-Oxide-Assisted Electroless Cu Plating on a Glass Substrate

材料科学 石墨烯 电镀(地质) 基质(水族馆) 氧化物 图层(电子) 粘附 纳米技术 电介质 复合材料 光电子学 冶金 海洋学 地球物理学 地质学
作者
Ayumu Nakasuji,Syun Gohda,Hideya Kawasaki
出处
期刊:Langmuir [American Chemical Society]
被引量:1
标识
DOI:10.1021/acs.langmuir.4c03985
摘要

In recent years, the advancement of high-frequency communication systems, particularly 5G and future 6G technologies, has increased the need for substrates that minimize signal loss and electromagnetic interference. Glass substrates are highly desirable for these applications due to their low dielectric constant and excellent surface smoothness. However, conventional electroless Cu plating methods struggle to achieve strong adhesion between Cu and the smooth, low-polarity surface of glass, making this an important challenge to address. To overcome this issue, this study presents a novel electroless Cu plating method that employs graphene oxide (GO) as an intermediary layer on amino-functionalized glass substrates. During a preheating process at 150 °C, the GO layer forms covalent C–N bonds with the amino-modified glass, significantly enhancing adhesion while preserving the surface smoothness required for high-frequency applications (Ra = 6.6 nm). This GO-based approach eliminates the need for traditional surface roughening techniques. Additionally, by incorporating silver nanoparticles (Ag NPs) as a catalyst, this method provides a cost-effective alternative to conventional palladium-based processes for Cu electroless plating. The resulting Cu film exhibits excellent adhesion, as confirmed by tape peel tests and a low volume resistivity of 2.4 μΩ·cm, making it well-suited for applications that require minimal signal loss at high frequencies.This innovative technique not only enhances the adhesion of the conductive layer but also maintains the surface smoothness crucial for high-frequency signal transmission, positioning it as a promising solution for the fabrication of advanced substrates in next-generation communication technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助乾雨采纳,获得10
1秒前
救我完成签到,获得积分10
2秒前
Nan发布了新的文献求助10
2秒前
LILYpig完成签到 ,获得积分10
3秒前
PSCs完成签到,获得积分10
4秒前
4秒前
Wd发布了新的文献求助10
4秒前
仙女完成签到 ,获得积分10
5秒前
薛婧旌完成签到,获得积分10
5秒前
6秒前
SC完成签到 ,获得积分10
6秒前
跳脚的虾完成签到 ,获得积分10
10秒前
xr完成签到 ,获得积分10
10秒前
silin完成签到,获得积分10
12秒前
ran完成签到 ,获得积分10
12秒前
12秒前
大知闲闲完成签到 ,获得积分10
13秒前
转山转水转出了自我完成签到,获得积分10
14秒前
g7001完成签到,获得积分10
16秒前
ALLon完成签到 ,获得积分10
16秒前
六步郎完成签到,获得积分10
16秒前
乾雨发布了新的文献求助10
16秒前
努力向前看完成签到,获得积分10
16秒前
chai完成签到,获得积分10
19秒前
123456完成签到,获得积分10
19秒前
李爱国应助无限的含羞草采纳,获得10
19秒前
高高的远山完成签到,获得积分10
20秒前
qzp完成签到 ,获得积分10
21秒前
梅川秋裤完成签到,获得积分10
22秒前
liuzm完成签到,获得积分10
24秒前
Kevin发布了新的文献求助10
24秒前
hellzhu完成签到,获得积分10
25秒前
张张完成签到,获得积分10
25秒前
Nan发布了新的文献求助10
26秒前
小伙子完成签到,获得积分0
27秒前
29秒前
沫柠完成签到 ,获得积分10
29秒前
大胆天磊完成签到 ,获得积分10
30秒前
30秒前
31秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837587
求助须知:如何正确求助?哪些是违规求助? 3379741
关于积分的说明 10510291
捐赠科研通 3099357
什么是DOI,文献DOI怎么找? 1707079
邀请新用户注册赠送积分活动 821427
科研通“疑难数据库(出版商)”最低求助积分说明 772615