清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

IG‐YOLOv8: Insulator Guardian Based on YOLO for Insulator Fault Detection

计算机科学
作者
Shenwang Li,Minjie Wang,Yuyang Zhou,Qiuren Su,Li Ping,Thomas Wu
出处
期刊:Ieej Transactions on Electrical and Electronic Engineering [Wiley]
卷期号:20 (4): 537-547 被引量:2
标识
DOI:10.1002/tee.24221
摘要

Abstract Insulators have an extremely important role in transmission lines, and they are important components for ensuring the safe operation of transmission lines. In order to solve the difficult problem of insulator fault detection under complex background, IG‐YOLOv8 insulator fault detection algorithm is proposed in this paper. First, the Wise‐IoU (WIoU) loss function is introduced to mitigate the adverse impact of low‐quality images by employing a dynamic non‐monotonic focusing mechanism, thereby enhancing the detection performance of the entire model. Second, a novel C2f network is constructed by integrating the receptive field coordination attention (RFCA) convolutional module to address the parameter‐sharing issue associated with large convolutional kernels. Additionally, the data set has been reorganized using k‐fold cross‐validation to ensure that each subset undergoes training and testing, consequently reducing generalization errors. Finally, a deformable attention (DA) mechanism is employed to augment the feature extraction capability pertaining to insulator fault region information. In order to evaluate the detection performance of the improved IG‐YOLOv8 algorithm, this study constructed an insulator target detection data set containing four fault types: Normal, Defect, Dirty, and Aging. The experimental results show that the average accuracy of the improved model is increased from 89.7% to 96.9%, and the Recall value of the Aging type insulator is increased from 71.8% to 89.1%. The occurrence of missed detection is greatly reduced, and the accuracy of detection is improved. © 2024 Institute of Electrical Engineers of Japan and Wiley Periodicals LLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高大又蓝完成签到,获得积分10
8秒前
高大又蓝发布了新的文献求助10
12秒前
潜行者完成签到 ,获得积分10
28秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
43秒前
bingo完成签到,获得积分10
1分钟前
重庆森林完成签到,获得积分10
1分钟前
Ada完成签到 ,获得积分10
1分钟前
笨笨的怜雪完成签到 ,获得积分10
2分钟前
CodeCraft应助水雾采纳,获得10
2分钟前
彩色的芷容完成签到 ,获得积分10
2分钟前
平常以云完成签到 ,获得积分10
2分钟前
鲤鱼山人完成签到 ,获得积分10
2分钟前
2分钟前
水雾发布了新的文献求助10
3分钟前
tt完成签到,获得积分10
3分钟前
Fairy完成签到,获得积分10
3分钟前
鹏程万里完成签到,获得积分10
4分钟前
暗号完成签到 ,获得积分0
4分钟前
LJJ完成签到,获得积分10
4分钟前
慕青应助研友_8RyzBZ采纳,获得10
5分钟前
ljl86400完成签到,获得积分10
5分钟前
5分钟前
研友_8RyzBZ发布了新的文献求助10
5分钟前
科研通AI6应助阳光的星月采纳,获得10
6分钟前
大个应助研友_8RyzBZ采纳,获得10
7分钟前
7分钟前
研友_8RyzBZ发布了新的文献求助10
7分钟前
123应助研友_8RyzBZ采纳,获得10
7分钟前
赘婿应助阳光的星月采纳,获得10
7分钟前
外向的妍完成签到,获得积分10
7分钟前
8分钟前
娟子完成签到,获得积分10
8分钟前
9分钟前
lsl应助Atopos采纳,获得30
10分钟前
Criminology34应助Atopos采纳,获得10
10分钟前
11分钟前
11分钟前
11分钟前
嘟嘟完成签到 ,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635162
求助须知:如何正确求助?哪些是违规求助? 4735022
关于积分的说明 14989826
捐赠科研通 4792862
什么是DOI,文献DOI怎么找? 2559967
邀请新用户注册赠送积分活动 1520215
关于科研通互助平台的介绍 1480311