Real-time speech emotion recognition using deep learning and data augmentation

计算机科学 情绪识别 语音识别 深度学习 人工智能
作者
Chawki Barhoumi,Yassine BenAyed
出处
期刊:Artificial Intelligence Review [Springer Science+Business Media]
卷期号:58 (2) 被引量:1
标识
DOI:10.1007/s10462-024-11065-x
摘要

In human–human interactions, detecting emotions is often easy as it can be perceived through facial expressions, body gestures, or speech. However, in human–machine interactions, detecting human emotion can be a challenge. To improve this interaction, Speech Emotion Recognition (SER) has emerged, with the goal of recognizing emotions solely through vocal intonation. In this work, we propose a SER system based on deep learning approaches and two efficient data augmentation techniques such as noise addition and spectrogram shifting. To evaluate the proposed system, we used three different datasets: TESS, EmoDB, and RAVDESS. We employe several algorithms such as Mel Frequency Cepstral Coefficients (MFCC), Zero Crossing Rate (ZCR), Mel spectrograms, Root Mean Square Value (RMS), and chroma to select the most appropriate vocal features that represent speech emotions. Three different deep learning models were imployed, including MultiLayer Perceptron (MLP), Convolutional Neural Network (CNN), and a hybrid model that combines CNN with Bidirectional Long-Short Term Memory (Bi-LSTM). By exploring these different approaches, we were able to identify the most effective model for accurately identifying emotional states from speech signals in real-time situation. Overall, our work demonstrates the effectiveness of the proposed deep learning model, specifically based on CNN+BiLSTM enhanced with data augmentation for the proposed real-time speech emotion recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
幻人发布了新的文献求助10
刚刚
偷懒一号完成签到,获得积分10
刚刚
羊与布克完成签到,获得积分10
1秒前
Hello应助liu采纳,获得10
2秒前
和谐的道之完成签到,获得积分10
3秒前
左凝珍发布了新的文献求助80
5秒前
7秒前
善学以致用应助土土采纳,获得10
8秒前
仁者无惧完成签到 ,获得积分10
9秒前
小蘑菇应助红叶采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
ZeroONE发布了新的文献求助30
10秒前
wonder123应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
一一应助科研通管家采纳,获得10
11秒前
一一应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
研友_5Zl4VZ完成签到,获得积分10
12秒前
12秒前
13秒前
脑洞疼应助喝一口奶茶采纳,获得10
13秒前
15秒前
繁花完成签到,获得积分10
15秒前
善学以致用应助轻松元正采纳,获得10
16秒前
英姑应助陆中硕采纳,获得10
16秒前
17秒前
18秒前
18秒前
zwhy579发布了新的文献求助10
19秒前
19秒前
土土发布了新的文献求助10
20秒前
20秒前
72发布了新的文献求助10
21秒前
22秒前
WC241002292发布了新的文献求助10
23秒前
23秒前
23秒前
一一应助爱学习采纳,获得10
24秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867327
求助须知:如何正确求助?哪些是违规求助? 3409602
关于积分的说明 10664435
捐赠科研通 3133927
什么是DOI,文献DOI怎么找? 1728521
邀请新用户注册赠送积分活动 833038
科研通“疑难数据库(出版商)”最低求助积分说明 780517