Harnessing Explainable AI for Sustainable Agriculture: SHAP-Based Feature Selection in Multi-Model Evaluation of Irrigation Water Quality Indices

卷积神经网络 计算机科学 特征(语言学) 人工智能 水质 深度学习 质量(理念) 特征选择 机器学习 模式识别(心理学) 生态学 哲学 语言学 认识论 生物
作者
Enas E. Hussein,Bilel Zerouali,Nadjem Bailek,A. Derdour,Sherif S. M. Ghoneim,Celso Augusto Guimarães Santos,Mofreh A. Hashim
出处
期刊:Water [Multidisciplinary Digital Publishing Institute]
卷期号:17 (1): 59-59
标识
DOI:10.3390/w17010059
摘要

Irrigation water quality is crucial for sustainable agriculture and environmental health, influencing crop productivity and ecosystem balance globally. This study evaluates the performance of multiple deep learning models in classifying the Irrigation Water Quality Index (IWQI), addressing the challenge of accurate water quality prediction by examining the impact of increasing input complexity, particularly through chemical ions and derived quality indices. The models tested include convolutional neural networks (CNN), CNN-Long Short-Term Memory networks (CNN-LSTM), CNN-bidirectional Long Short-Term Memory networks (CNN-BiLSTM), and CNN-bidirectional Gated Recurrent Unit networks (CNN-BiGRUs). Feature selection via SHapley Additive exPlanations (SHAP) provided insights into individual feature contributions to the model predictions. The objectives were to compare the performance of 16 models and identify the most effective approach for accurate IWQI classification. This study utilized data from 166 wells in Algeria’s Naama region, with 70% of the data for training and 30% for testing. Results indicate that the CNN-BiLSTM model outperformed others, achieving an accuracy of 0.94 and an area under the curve (AUC) of 0.994. While CNN models effectively capture spatial features, they struggle with temporal dependencies—a limitation addressed by LSTM and BiGRU layers, which were further enhanced through bidirectional processing in the CNN-BiLSTM model. Feature importance analysis revealed that the quality index (qi) qi-Na was the most significant predictor in both Model 15 (0.68) and Model 16 (0.67). The quality index qi-EC showed a slight decrease in importance, from 0.19 to 0.18 between the models, while qi-SAR and qi-Cl maintained similar importance levels. Notably, Model 16 included qi-HCO3 with a minor importance score of 0.02. Overall, these findings underscore the critical role of sodium levels in water quality predictions and suggest areas for enhancing model performance. Despite the computational demands of the CNN-BiLSTM model, the results contribute to the development of robust models for effective water quality management, thereby promoting agricultural sustainability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨夜星空发布了新的文献求助10
刚刚
taoliu发布了新的文献求助10
1秒前
自由山槐发布了新的文献求助30
1秒前
1秒前
huhu发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
4秒前
慕知发布了新的文献求助10
4秒前
yiw发布了新的文献求助10
5秒前
5秒前
NexusExplorer应助沐子采纳,获得10
5秒前
丫丫发布了新的文献求助10
5秒前
所所应助H0oZz采纳,获得10
5秒前
159完成签到,获得积分10
5秒前
SciGPT应助taoliu采纳,获得10
5秒前
6秒前
6秒前
6秒前
橙子发布了新的文献求助10
7秒前
7秒前
边贺发布了新的文献求助10
7秒前
Brian发布了新的文献求助10
8秒前
积极玲完成签到,获得积分10
8秒前
情怀应助lzj采纳,获得10
8秒前
xiongyuan完成签到,获得积分10
10秒前
10秒前
Hydro发布了新的文献求助10
10秒前
无敌暴龙学神完成签到,获得积分10
10秒前
完美世界应助永远明媚采纳,获得10
10秒前
11秒前
天行马完成签到,获得积分10
11秒前
12秒前
13秒前
TING发布了新的文献求助10
14秒前
搜集达人应助believe采纳,获得10
14秒前
小蘑菇应助xxxx采纳,获得10
15秒前
iiiau完成签到,获得积分10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790524
求助须知:如何正确求助?哪些是违规求助? 3335294
关于积分的说明 10274188
捐赠科研通 3051766
什么是DOI,文献DOI怎么找? 1674822
邀请新用户注册赠送积分活动 802870
科研通“疑难数据库(出版商)”最低求助积分说明 760956