Enhancing Gout Diagnosis with Deep Learning in Dual-energy Computed Tomography: A Retrospective Analysis of Crystal and Artifact Differentiation

医学 痛风 接收机工作特性 人工智能 核医学 放射科 卷积神经网络 预测值 支持向量机 断层摄影术 模式识别(心理学) 内科学 计算机科学
作者
Yun‐Jung Choi,Riel Castro‐Zunti,Daewoo Lee,Jae Sung Yun,Younhee Choi,Seok‐Bum Ko,Eun Jung Choi,Gong Yong Jin,Wan‐Hee Yoo,Eun Hae Park
出处
期刊:Rheumatology [Oxford University Press]
标识
DOI:10.1093/rheumatology/keae523
摘要

Abstract Objectives To evaluate whether the application of deep learning (DL) could achieve high diagnostic accuracy in differentiating between green colour coding, indicative of tophi, and clumpy artifacts observed in dual-energy computed tomography (DECT) scans. Methods A comprehensive analysis of 18 704 regions of interest (ROIs) extracted from green foci in DECT scans obtained from 47 patients with gout and 27 gout-free controls was performed. The ROIs were categorized into three size groups: small, medium, and large. Convolutional neural network (CNN) analysis on a per-lesion basis and support vector machine (SVM) analysis on a per-patient basis were performed. The area under the receiver operating characteristic curve, sensitivity, specificity, positive predictive value, and negative predictive value of the models were compared. Results For small ROIs, the sensitivity and specificity of the CNN model were 81.5% and 96.1%, respectively; for medium ROIs, 82.7% and 96.1%, respectively; for large ROIs, 91.8% and 86.9%, respectively. Additionally, the DL algorithm exhibited accuracies of 88.5%, 88.6%, and 91.0% for small, medium, and large ROIs, respectively. In the per-patient analysis, the SVM approach demonstrated a sensitivity of 87.2%, a specificity of 100%, and an accuracy of 91.8% in distinguishing between patients with gout and gout-free controls. Conclusion Our study demonstrates the effectiveness of the DL algorithm in differentiating between green colour coding indicative of crystal deposition and clumpy artifacts in DECT scans. With high sensitivity, specificity, and accuracy, the utilization of DL in DECT for diagnosing gout enables precise lesion classification, facilitating early-stage diagnosis and promoting timely intervention approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容丶不解释完成签到,获得积分10
1秒前
1秒前
yuminger完成签到 ,获得积分10
1秒前
嘎嘎嘎嘎完成签到,获得积分10
1秒前
MLJ完成签到 ,获得积分10
2秒前
嘻嘻完成签到 ,获得积分10
2秒前
飞鱼完成签到,获得积分10
3秒前
Hailin完成签到,获得积分10
3秒前
小巧的怜晴完成签到,获得积分10
4秒前
peijiang发布了新的文献求助10
4秒前
可耐的雁凡完成签到,获得积分10
5秒前
leave完成签到,获得积分10
5秒前
5秒前
飘逸踏歌完成签到,获得积分0
6秒前
7秒前
司马秋凌完成签到,获得积分10
7秒前
852应助宁静致远采纳,获得10
7秒前
wang666完成签到,获得积分10
7秒前
月月月鸟伟完成签到,获得积分10
8秒前
三里墩头完成签到,获得积分0
8秒前
量子星尘发布了新的文献求助10
9秒前
帅气的Bond完成签到,获得积分10
9秒前
didi发布了新的文献求助10
9秒前
木木木木完成签到,获得积分10
10秒前
洁净的士晋完成签到,获得积分10
10秒前
花生四烯酸完成签到,获得积分10
10秒前
kingripple完成签到,获得积分10
10秒前
秋山伊夫完成签到,获得积分10
10秒前
笑笑完成签到,获得积分10
10秒前
卉木萋萋完成签到 ,获得积分10
11秒前
健忘的蓉完成签到 ,获得积分10
11秒前
西西弗斯完成签到,获得积分10
11秒前
暖冬22完成签到,获得积分10
12秒前
MJX完成签到,获得积分10
12秒前
PWG完成签到,获得积分10
12秒前
fafa完成签到 ,获得积分10
12秒前
等等有力气完成签到,获得积分10
13秒前
13秒前
Xing发布了新的文献求助10
13秒前
阿橘完成签到,获得积分10
13秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3886144
求助须知:如何正确求助?哪些是违规求助? 3428265
关于积分的说明 10759171
捐赠科研通 3153061
什么是DOI,文献DOI怎么找? 1740829
邀请新用户注册赠送积分活动 840369
科研通“疑难数据库(出版商)”最低求助积分说明 785348