Computational Framework for Target Tracking Information Fusion Problems

计算机科学 软件 源代码 数据挖掘 传感器融合 算法 分解 机器学习 生态学 生物 程序设计语言 操作系统
作者
Tianyu Yang,Jiongbai Liu,Tasnim Ibn Faiz,Chrysafis Vogiatzis,Md. Noor‐E‐Alam
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0016
摘要

In this work, we propose computationally tractable techniques for extracting valuable information from diverse data sources collected by multiple sensors in a variety of formats (visual, sonar, quantitative, qualitative, social information, etc.). More specifically, we develop an integrated approach consisting of two algorithms for extracting information and achieving a consensus-based, robust solution. The first algorithm extracts solutions from sensors within each data source, whereas the second algorithm reaches a compromise among the generated solutions from the previous algorithm across all data sources. To accomplish these goals, we initially transform the multisensor multitarget tracking problem (MSMTT) problem into a multidimensional assignment problem. Subsequently, we introduce a decomposition-based multisensor recursive approach referred to as a revised multisensor recursive algorithm, which can efficiently deliver a robust solution for each single data source MSMTT problem. In the second algorithm, we extend our methodology to the multisource MSMTT problem by introducing a connection-based symmetric nonnegative matrix factorization technique, which is shown to be computationally feasible and efficient in obtaining high-quality solutions. History: Accepted by Ram Ramesh, Area Editor for Data Science & Machine Learning. Funding: This work was supported by the Army Research Laboratory [Grant G00006831]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0016 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0016 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SamYang发布了新的文献求助10
1秒前
安静的筝发布了新的文献求助10
1秒前
香蕉觅云应助中国大陆采纳,获得10
1秒前
2秒前
2秒前
闻妙完成签到,获得积分10
2秒前
2秒前
3秒前
小马甲应助鳗鱼采纳,获得10
3秒前
Hello应助rxn824采纳,获得10
3秒前
3秒前
kkxx应助meng采纳,获得20
4秒前
伊一完成签到 ,获得积分10
4秒前
科研小白发布了新的文献求助10
5秒前
5秒前
21发布了新的文献求助10
5秒前
吴梦瑜发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
zhangsfdfgldf发布了新的文献求助10
6秒前
虚线完成签到,获得积分10
6秒前
6秒前
6秒前
香蕉觅云应助诚心晓露采纳,获得10
7秒前
xyz发布了新的文献求助10
7秒前
kk发布了新的文献求助10
7秒前
8秒前
AlwaysKim发布了新的文献求助10
8秒前
木木完成签到,获得积分10
8秒前
8秒前
慕青应助包子采纳,获得10
8秒前
一啊呀发布了新的文献求助10
9秒前
9秒前
zxy发布了新的文献求助10
9秒前
insane发布了新的文献求助10
9秒前
wzx发布了新的文献求助10
10秒前
piglet完成签到 ,获得积分10
10秒前
Sun发布了新的文献求助10
10秒前
小米应助li采纳,获得10
10秒前
丙队长完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4283556
求助须知:如何正确求助?哪些是违规求助? 3811433
关于积分的说明 11939026
捐赠科研通 3457861
什么是DOI,文献DOI怎么找? 1896376
邀请新用户注册赠送积分活动 945186
科研通“疑难数据库(出版商)”最低求助积分说明 848901