Artificial intelligence for hemodynamic monitoring with a wearable electrocardiogram monitor

医学 接收机工作特性 心导管术 心脏病学 内科学 队列 前瞻性队列研究 心电图 心力衰竭 回廊的 中心静脉压 血压 心率
作者
Daphne E. Schlesinger,Ridwan Alam,R. Ringel,Eugene Pomerantsev,Srikanth Devireddy,Pinak B. Shah,Joseph M. Garasic,Collin M. Stultz
出处
期刊:Communications medicine [Springer Nature]
卷期号:5 (1)
标识
DOI:10.1038/s43856-024-00730-5
摘要

The ability to non-invasively measure left atrial pressure would facilitate the identification of patients at risk of pulmonary congestion and guide proactive heart failure care. Wearable cardiac monitors, which record single-lead electrocardiogram data, provide information that can be leveraged to infer left atrial pressures. We developed a deep neural network using single-lead electrocardiogram data to determine when the left atrial pressure is elevated. The model was developed and internally evaluated using a cohort of 6739 samples from the Massachusetts General Hospital (MGH) and externally validated on a cohort of 4620 samples from a second institution. We then evaluated model on patch-monitor electrocardiographic data on a small prospective cohort. The model achieves an area under the receiver operating characteristic curve of 0.80 for detecting elevated left atrial pressures on an internal holdout dataset from MGH and 0.76 on an external validation set from a second institution. A further prospective dataset was obtained using single-lead electrocardiogram data with a patch-monitor from patients who underwent right heart catheterization at MGH. Evaluation of the model on this dataset yielded an area under the receiver operating characteristic curve of 0.875 for identifying elevated left atrial pressures for electrocardiogram signals acquired close to the time of the right heart catheterization procedure. These results demonstrate the utility and the potential of ambulatory cardiac hemodynamic monitoring with electrocardiogram patch-monitors. Heart failure is a common disorder that is challenging to manage. Appearance of symptoms can be subtle and dangerous and there are few tools for clinicians to estimate when a patient is likely to experience an episode of heart failure. Current methods to detect elevated pressure in the heart (one sign of oncoming failure) are invasive and can only be performed in an inpatient setting. A non-invasive, quick method for detecting higher heart pressure would be helpful for identifying worsening heart failure in the home environment. For this reason, we developed a computer method to detect elevated pressures inside the heart using a non-invasive signal from a wearable patch monitor device, the electrocardiogram (ECG, or EKG). Our results show our method provides a reliable, non-invasive way to measure heart pressures using data that can be obtained in the outpatient setting. Schlesinger and Alam et al. utilize a deep neural network and single-lead electrocardiogram data to determine elevated left atrial pressure in patients. This work aims to identify patients at risk of pulmonary congestion and guide proactive heart failure care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Walter发布了新的文献求助10
6秒前
yinrongbin发布了新的文献求助10
7秒前
7秒前
丘比特应助平淡的翠霜采纳,获得10
7秒前
林士完成签到,获得积分10
9秒前
隐形曼青应助Peri采纳,获得10
11秒前
林士发布了新的文献求助10
12秒前
小廖同学完成签到,获得积分20
12秒前
13秒前
自由如风完成签到 ,获得积分10
14秒前
lhj完成签到,获得积分10
14秒前
14秒前
16秒前
周胜完成签到,获得积分10
16秒前
17秒前
科研小白发布了新的文献求助10
17秒前
KIKI完成签到,获得积分10
18秒前
王先生完成签到 ,获得积分10
19秒前
20秒前
bkagyin应助一沙采纳,获得10
20秒前
21秒前
21秒前
21秒前
汽水发布了新的文献求助10
22秒前
22秒前
Ava应助科研通管家采纳,获得10
23秒前
科目三应助科研通管家采纳,获得10
23秒前
赘婿应助科研通管家采纳,获得10
23秒前
肖123完成签到,获得积分10
23秒前
23秒前
英俊的铭应助科研通管家采纳,获得10
23秒前
弄香完成签到,获得积分10
23秒前
我是老大应助科研通管家采纳,获得10
23秒前
23秒前
华仔应助科研通管家采纳,获得10
23秒前
orixero应助科研通管家采纳,获得10
23秒前
24秒前
深情安青应助科研通管家采纳,获得10
24秒前
爆米花应助科研通管家采纳,获得10
24秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842685
求助须知:如何正确求助?哪些是违规求助? 3384701
关于积分的说明 10536834
捐赠科研通 3105234
什么是DOI,文献DOI怎么找? 1710162
邀请新用户注册赠送积分活动 823493
科研通“疑难数据库(出版商)”最低求助积分说明 774129