A method for calibrating robotic kinematic parameters based on a multi-error source model and an optimized measurement pose set

运动学 集合(抽象数据类型) 计算机科学 人工智能 计算机视觉 物理 经典力学 程序设计语言
作者
Bo Cheng,Bo Wang,Shujun Chen,Ziqiang Zhang,Jun‐Jun Xiao
出处
期刊:Industrial Robot-an International Journal [Emerald (MCB UP)]
标识
DOI:10.1108/ir-10-2024-0482
摘要

Purpose The purpose of this study is to improve the accuracy of industrial robot kinematic parameter identification and position accuracy by solving the problem of insufficient consideration of error sources in the kinematic parameter identification model and optimizing the selection of measurement pose set. Design/methodology/approach In this study, a kinematic calibration method for industrial robots considering multiple error sources is proposed. Based on the Modified Denavit Hartenberg (MD-H) model, a robot kinematics identification model including joint reduction ratio error, target ball installation error and coordinate system transformation error is established. Taking the optimal observability index O1 and the minimum flexible deformation as the optimization objectives, a measurement pose set optimization method based on Non-dominated Sorting Genetic Algorithm II (NSGA-II) is proposed to obtain a measurement pose set with higher identification accuracy. Findings Through experiments conducted with the Nantong Zhenkang ZK1400-6 robot as the test subject, the kinematic parameters identified by the optimized measurement pose set are more accurate than the randomly selected measurement pose set, and the positioning accuracy of the robot is improved from 2.11 to 0.31 mm, an increase of 85.3%. Originality/value This study introduces a position error model that comprehensively accounts for the error sources causing positioning inaccuracies. Building on this foundation, a novel flexible deformation index is proposed to quantify the flexible deformation in the measurement pose set, thereby reducing the impact of such deformation on the position error in the model. To the best of the authors’ knowledge, for the first time, this study presents an optimization method for the measurement pose set based on NSGA-II, using the flexible deformation index and observability index as objectives for multi-objective optimization, simultaneously optimizing the pose error and Jacobian matrix in the error model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助爱笑冰海采纳,获得10
刚刚
斯文败类应助liuziop采纳,获得10
1秒前
听白完成签到,获得积分10
1秒前
wwwdddyyy完成签到,获得积分10
2秒前
BareBear应助Chen采纳,获得10
2秒前
钙钛矿科研狗完成签到,获得积分10
2秒前
lin完成签到,获得积分20
2秒前
俊逸飞雪完成签到,获得积分10
3秒前
3秒前
3秒前
Owen应助平淡谷兰采纳,获得10
4秒前
gengren163完成签到,获得积分10
4秒前
忧郁水彤发布了新的文献求助10
4秒前
自由的松发布了新的文献求助10
4秒前
4秒前
attain完成签到,获得积分10
4秒前
无花果应助elfff采纳,获得10
4秒前
5秒前
5秒前
5秒前
不想上班了完成签到,获得积分10
5秒前
斯文败类应助lin采纳,获得10
6秒前
冬瓜完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
6秒前
林夏发布了新的文献求助10
6秒前
箐筝完成签到 ,获得积分10
7秒前
高高完成签到 ,获得积分10
7秒前
蛋蛋完成签到 ,获得积分20
7秒前
量子星尘发布了新的文献求助10
8秒前
王小乔发布了新的文献求助10
10秒前
hehe发布了新的文献求助10
10秒前
cc发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
忧郁水彤完成签到,获得积分10
11秒前
情怀应助一一采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472693
求助须知:如何正确求助?哪些是违规求助? 4574967
关于积分的说明 14349488
捐赠科研通 4502296
什么是DOI,文献DOI怎么找? 2467064
邀请新用户注册赠送积分活动 1455042
关于科研通互助平台的介绍 1429246