Physiological state recognition model of small silkworm based on improved YOLOv5

集合(抽象数据类型) 功能(生物学) 计算机科学 生物 进化生物学 程序设计语言
作者
Pu Liu,Xingrui He,Kai Zhao,Wei Li,Bo Huang
出处
期刊:Science Progress [SAGE Publishing]
卷期号:107 (4)
标识
DOI:10.1177/00368504241298136
摘要

Silkworm breeding, as a pivotal economic activity across various regions of China, plays a crucial role in promoting rural revitalization. Notably, the early stage of silkworm development, during which the larvae are most vulnerable and environmentally sensitive, poses significant challenges due to their high pathogenicity and mortality rates. To enhance the efficiency of silkworm breeding, it is imperative to accurately and rapidly identify the physiological state of these small silkworms, ensuring timely feedback to farmers. By using the manually labeled data set, we trained a neural network model to identify the age of the small silkworm through the external characteristics and body length of different instars, and the model used the output center point coordinates to evaluate whether the silkworm entered the dormancy period. If the small silkworm enters the dormant period, the small silkworm will not move. By comparing the maximum difference of the coordinates of the center point of the small silkworm in the experimental group during the dormant period and the feeding period, a certain threshold is set. If the maximum difference of the coordinates of the center point is less than the threshold, the small silkworm is judged to enter the dormant period. To further enhance the model's performance, we introduced an improved target detection network model, building upon the established YOLOv5 architecture. This enhanced model integrates the C3-SE attention mechanism, enabling the network to focus more intently on the target of interest, thus improving detection accuracy. Additionally, we replaced the CIoU loss function in the original target detection network model with the Focal-EIoU loss function. This adjustment effectively mitigates the issue of imbalanced positive and negative samples, accelerating the convergence speed of the network and ultimately enhancing the model's accuracy and recall rate. To validate the accuracy of the proposed model, we randomly selected sample pictures from the curated small silkworm dataset, constituting the test and verification sets. This dataset comprised images and videos capturing different developmental stages of small silkworms. The test results demonstrate that the improved YOLOv5 model achieves an average accuracy of 92.2%, surpassing the preimproved network model by 2.29%. Specifically, the model exhibits a 0.3% increase in accuracy, a 3.4% improvement in recall rate, and a significant 7.7% enhancement in frames per second. These findings indicate that the enhanced YOLOv5 model is capable of accurately and efficiently identifying the physiological state of small silkworms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
安安完成签到 ,获得积分10
1秒前
Claire完成签到 ,获得积分10
3秒前
今后应助wang采纳,获得10
3秒前
赘婿应助蒙太奇采纳,获得10
4秒前
Leo发布了新的文献求助10
5秒前
8秒前
仿真小学生完成签到,获得积分10
9秒前
ding完成签到 ,获得积分10
9秒前
WDK完成签到,获得积分10
11秒前
菠萝完成签到 ,获得积分10
13秒前
高高的山兰完成签到 ,获得积分10
15秒前
科研通AI5应助昭谏采纳,获得10
16秒前
dg_fisher给dg_fisher的求助进行了留言
16秒前
乐乐应助小天采纳,获得10
18秒前
shiwo110完成签到,获得积分10
24秒前
25秒前
今天只做一件事应助WDK采纳,获得10
26秒前
威武的雨筠完成签到 ,获得积分10
29秒前
30秒前
岁月轮回发布了新的文献求助10
31秒前
漂亮孤兰完成签到 ,获得积分10
31秒前
西瓜完成签到 ,获得积分10
33秒前
hl完成签到,获得积分10
35秒前
共享精神应助科研通管家采纳,获得10
35秒前
35秒前
35秒前
无花果应助科研通管家采纳,获得10
35秒前
35秒前
35秒前
35秒前
36秒前
好想笑发布了新的文献求助10
37秒前
xzy998应助小天采纳,获得10
38秒前
北风应助mkljl采纳,获得10
40秒前
好想笑完成签到,获得积分10
43秒前
Lucas应助何博采纳,获得10
44秒前
十三完成签到,获得积分10
44秒前
wzglpdq完成签到,获得积分10
46秒前
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779606
求助须知:如何正确求助?哪些是违规求助? 3325116
关于积分的说明 10221269
捐赠科研通 3040209
什么是DOI,文献DOI怎么找? 1668673
邀请新用户注册赠送积分活动 798766
科研通“疑难数据库(出版商)”最低求助积分说明 758535