National Use of Artificial Intelligence for Eye Screening in Singapore

人工智能 验光服务 计算机科学 数据科学 医学
作者
Dinesh Visva Gunasekeran,Steven Miller,Wynne Hsu,Mong Li Lee,Hon Tym Wong,M. Lee,Ecosse L. Lamoureux,Daniel Shu Wei Ting,Gavin Siew Wei Tan,Tien Yin Wong
标识
DOI:10.1056/aics2400404
摘要

Diabetes is a major health care challenge, affecting 10% of the global population. One third of patients with diabetes have an ocular complication known as diabetic retinopathy (DR). DR progression to manifestations such as vision-threatening diabetic retinopathy (VTDR) remains the leading cause of blindness in working-aged adults. Yearly DR screening is a universally recommended practice in primary care settings for patients with diabetes, but it is often difficult to implement due to a lack of staffing and screening capacity in primary care. This case study highlights our experience with developing a medical artificial intelligence (AI) software-as-a-medical-device (SaMD) solution for DR screening and implementing it at a national level to provide the capacity needed for DR screening in Singapore. Our approach involved two broad phases. First, we established a national telemedicine screening program, Singapore Integrated Diabetic Retinopathy Program (SiDRP), for population screening of DR in primary care run by trained, nonclinician human graders. Second, we deployed a deep learning–based AI solution, Singapore Eye Lesion Analyzer (SELENA+), into the SiDRP to scale-up the DR screening process by the human graders. We demonstrated the cost-effectiveness of this solution, and obtained medical device regulatory approval for clinical use in health care settings. We report the prospective evaluation of SELENA+ in SiDRP using real-world pilot data from the first 1712 patients consecutively recruited. Sensitivity and specificity of SELENA+ in detection of referable DR cases were 94.7% (95% confidence interval [CI] 88.0% to 98.3%) and 82.2% (95% CI 80.8% to 83.5%), respectively. In comparison, sensitivity and specificity of human graders were 98.9% (95% CI 94.0% to 99.9%) and 97.2% (95% CI 96.6–97.8%), respectively. For patients with VTDR, SELENA+ demonstrated a substantial advantage of higher sensitivity compared with human performance, reflecting the benefit of the fine-tuning of SELENA+ that we performed to enhance the AI solution's ability to detect VTDR. We outline the clinical, technical, operational, regulatory, and governance challenges encountered as well as the lessons learnt in this AI algorithm implementation journey. We also present a conceptual framework with considerations and strategies for the broader adoption of medical AI SaMD solutions in the field of ophthalmology and beyond.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小小鱼发布了新的文献求助10
1秒前
英俊的铭应助符双双采纳,获得10
1秒前
XQQDD发布了新的文献求助10
1秒前
iljm完成签到,获得积分10
1秒前
2秒前
猪猪hero发布了新的文献求助10
2秒前
科研通AI5应助波波采纳,获得20
2秒前
CodeCraft应助沙非娅采纳,获得10
2秒前
Jankin完成签到,获得积分20
3秒前
生动纲发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
咚巴拉发布了新的文献求助10
6秒前
吴未发布了新的文献求助10
6秒前
koukaki完成签到,获得积分10
6秒前
7秒前
TiY发布了新的文献求助10
7秒前
小赐完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
xiaoxiao晓完成签到,获得积分10
9秒前
10秒前
10秒前
刘成财发布了新的文献求助10
11秒前
11秒前
标致冰海完成签到,获得积分10
12秒前
13秒前
DDD发布了新的文献求助10
13秒前
坦率尔琴发布了新的文献求助10
14秒前
XRH发布了新的文献求助10
14秒前
无花果应助无聊的幻天采纳,获得30
14秒前
标致冰海发布了新的文献求助10
16秒前
16秒前
站在科研顶端的男人完成签到,获得积分10
16秒前
11111发布了新的文献求助10
16秒前
17秒前
充电宝应助asdfqwer采纳,获得10
17秒前
情怀应助吃颗糖吧采纳,获得10
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791817
求助须知:如何正确求助?哪些是违规求助? 3336131
关于积分的说明 10279169
捐赠科研通 3052806
什么是DOI,文献DOI怎么找? 1675333
邀请新用户注册赠送积分活动 803378
科研通“疑难数据库(出版商)”最低求助积分说明 761208