FedSTS: A Stratified Client Selection Framework for Consistently Fast Federated Learning

选择(遗传算法) 计算机科学 分层抽样 联合学习 分布式计算 机器学习 统计 数学
作者
Dehong Gao,Duanxiao Song,Guangyuan Shen,Xiaoyan Cai,Libin Yang,Gongshen Liu,Xiaoyong Li,Zhen Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3438843
摘要

In this article, we investigate random client selection in the context of horizontal federated learning (FL), whereby only a randomly selected subset of clients transmit their model updates to the server instead of yielding all clients involved. Many researchers have demonstrated that clustering-based client selection constitutes a simple yet efficacious approach to the identification of those clients possessing representative gradient information. Despite the extensive body of research on modified selection methodologies, the majority of prior work is predicated upon the assumption of consistently effective clustering. However, raw gradient-based clustering methods are subject to several challenges: 1) poor effectiveness, the raw high-dimensional gradient of a client is too complex to serve as an appropriate feature for grouping, resulting in large intra-cluster distances and 2) fluctuating effectiveness, due to inherent limitations in clustering, the effectiveness can vary significantly, leading to clusters with diverse levels of heterogeneity. In practice, suboptimal and inconsistent clustering effects can result in clusters with low intra-cluster similarity among clients. The selection of clients from such clusters may impede the overall convergence of training. In this article, we propose, a novel client selection scheme to accelerate the FL convergence by variance reduction. The main idea of is to stratify a compressed model update in order to ensure an excellent grouping effect, and at the same time reduce the cross-client variance by re-allocating the sample chance among different groups based on their diverse heterogeneity. It strikes this convergence acceleration by paying more attention to those client groups with relatively low similarity and then improving the representativeness of the selected subset as much as possible. Theoretically, we demonstrate the critical improvement of the proposed scheme in variance reduction and present equivalence conditions among different client selection methods. We also present the tighter convergence guarantee of the proposed method thanks to the variance reduction. Experimental results confirm the exceeded efficiency of our approach compared to alternatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形傲霜完成签到 ,获得积分10
1秒前
1秒前
小庄完成签到,获得积分10
1秒前
九卫完成签到 ,获得积分10
2秒前
落后十八完成签到,获得积分10
2秒前
tianxiong完成签到 ,获得积分10
4秒前
求助人完成签到 ,获得积分10
4秒前
5秒前
5秒前
5秒前
大雷发布了新的文献求助10
6秒前
研友_8WO978完成签到,获得积分10
6秒前
6秒前
北海完成签到,获得积分10
6秒前
heher完成签到 ,获得积分10
7秒前
nyfz2002发布了新的文献求助10
7秒前
wangke完成签到,获得积分10
8秒前
丹阳阳完成签到,获得积分10
8秒前
夜未央完成签到,获得积分10
9秒前
奋斗的大白菜完成签到,获得积分10
9秒前
聪慧的橘子完成签到 ,获得积分10
9秒前
昵称完成签到,获得积分10
9秒前
挺帅一男的完成签到,获得积分10
9秒前
脑洞疼应助专一的萝莉采纳,获得10
10秒前
研友_8WO978发布了新的文献求助10
10秒前
fwz发布了新的文献求助10
10秒前
AoAoo发布了新的文献求助10
10秒前
orchid发布了新的文献求助10
11秒前
gyx完成签到 ,获得积分10
11秒前
米粒完成签到 ,获得积分10
11秒前
梦河完成签到,获得积分10
11秒前
梅西完成签到 ,获得积分10
11秒前
含蓄幻桃发布了新的文献求助10
11秒前
小mol仙完成签到,获得积分10
12秒前
A溶大美噶完成签到,获得积分10
12秒前
乐观健柏完成签到,获得积分10
13秒前
琥1完成签到,获得积分10
13秒前
枯藤老柳树完成签到,获得积分10
13秒前
东皇太憨完成签到,获得积分10
14秒前
打打完成签到 ,获得积分10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788474
求助须知:如何正确求助?哪些是违规求助? 3333791
关于积分的说明 10263810
捐赠科研通 3049776
什么是DOI,文献DOI怎么找? 1673652
邀请新用户注册赠送积分活动 802148
科研通“疑难数据库(出版商)”最低求助积分说明 760526