LSwinSR: UAV Imagery Super-Resolution Based on Linear Swin Transformer

遥感 计算机科学 图像分辨率 计算机视觉 人工智能 地质学
作者
Rui Li,Xiaowei Zhao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:3
标识
DOI:10.1109/tgrs.2024.3463204
摘要

Super-resolution, which aims to reconstruct high-resolution images from low-resolution images, has drawn considerable attention and has been intensively studied in computer vision and remote sensing communities. The super-resolution technology is especially beneficial for Unmanned Aerial Vehicles (UAV), as the amount and resolution of images captured by UAV are highly limited by physical constraints such as flight altitude and load capacity. In the wake of the successful application of deep learning methods in the super-resolution task, in recent years, a series of super-resolution algorithms have been developed. In this paper, for the super-resolution of UAV images, a novel network based on the state-of-the-art Swin Transformer is proposed with better efficiency and competitive accuracy. Meanwhile, as one of the essential applications of the UAV is land cover and land use monitoring, simple image quality assessments such as the Peak-Signal-to-Noise Ratio (PSNR) and the Structural Similarity Index Measure (SSIM) are not enough to comprehensively measure the performance of an algorithm. Therefore, we further investigate the effectiveness of super-resolution methods using the accuracy of semantic segmentation. The code will be available at this https URL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
Wilson发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
qwqw发布了新的文献求助10
3秒前
小屁孩发布了新的文献求助10
3秒前
机智的绝音完成签到,获得积分10
3秒前
充电宝应助ludwig采纳,获得10
4秒前
yy发布了新的文献求助10
4秒前
比巴布卡龙完成签到,获得积分10
4秒前
5秒前
所所应助nino采纳,获得10
6秒前
7秒前
樱桃发布了新的文献求助10
7秒前
哦豁发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
直率的朋友完成签到,获得积分10
9秒前
彭于晏应助阿幽采纳,获得10
10秒前
10秒前
唐雪晨完成签到,获得积分10
11秒前
12秒前
子凯发布了新的文献求助10
12秒前
俏皮不可发布了新的文献求助10
12秒前
12秒前
慕容飞凤发布了新的文献求助10
12秒前
领导范儿应助梁宇轩采纳,获得10
13秒前
田様应助大川采纳,获得10
14秒前
MarcoPolo发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
代鹤发布了新的文献求助10
15秒前
慕青应助zhh采纳,获得10
16秒前
我是老大应助迷路的翼采纳,获得10
16秒前
gzz发布了新的文献求助10
17秒前
17秒前
你好完成签到,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5474952
求助须知:如何正确求助?哪些是违规求助? 4576591
关于积分的说明 14358882
捐赠科研通 4504624
什么是DOI,文献DOI怎么找? 2468313
邀请新用户注册赠送积分活动 1455982
关于科研通互助平台的介绍 1429775