亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimisation models for estimating public transport OD matrices using different data types

计算机科学 生物系统 数据挖掘 生物
作者
Karla Isabel Cervantes-Sanmiguel,María Victoria Chávez Hernández,José‐Fernando Camacho‐Vallejo,Omar Jorge Ibarra-Rojas
出处
期刊:Transportmetrica [Taylor & Francis]
卷期号:: 1-28
标识
DOI:10.1080/23249935.2024.2419486
摘要

Efficient public transport systems rely on origin–destination matrices (ODMs) estimation to accurately capture passenger travel patterns, enabling adjustments to frequencies and lines as needed. In this study, we address the ODM estimation problem by employing multiple bi-level programs that consider an outdated ODM and observed passenger flows on specific transit line arcs. Additionally, we consider various optional data types, including boarding and alighting data, as well as the structure of the outdated ODM and passenger flows, either all, separately, in combination, or none. In our study, we reformulate these bi-level programs into single-level models, and we use a commercial solver to address the problem in benchmark instances. In our analysis, we focus on the impact of incorporating different types of information into the estimation process, leading to valuable insights. We find that considering all the data types leads to a higher accuracy than only a subset of these data types. In particular, focussing only on boarding and alighting data leads to improvements in the estimation process, whereas considering only the structure of the outdated ODM and passenger flows leads to reduced accuracy compared to not incorporating either. The latter highlights the significance of data selection in ODM estimations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
任性凤凰发布了新的文献求助10
6秒前
Owen应助隐形的绮山采纳,获得10
8秒前
活泼人生完成签到 ,获得积分10
16秒前
FashionBoy应助任性凤凰采纳,获得30
16秒前
19秒前
23秒前
月5114完成签到 ,获得积分10
25秒前
28秒前
甜蜜发带完成签到 ,获得积分10
30秒前
烟花应助lichunxu采纳,获得10
33秒前
不能随便完成签到,获得积分10
36秒前
42秒前
熠熠发布了新的文献求助10
47秒前
50秒前
wait发布了新的文献求助10
55秒前
1分钟前
熠熠完成签到,获得积分10
1分钟前
人间理想完成签到,获得积分10
1分钟前
1分钟前
小洪俊熙完成签到,获得积分10
1分钟前
Aaron完成签到 ,获得积分0
1分钟前
HEIKU应助redbunny采纳,获得10
1分钟前
1分钟前
wait完成签到,获得积分10
1分钟前
斯文的苡完成签到,获得积分10
1分钟前
lichunxu关注了科研通微信公众号
2分钟前
小马甲应助灵巧的之瑶采纳,获得10
2分钟前
田様应助微笑雪兰采纳,获得10
2分钟前
JamesPei应助隐形的绮山采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
lichunxu发布了新的文献求助10
2分钟前
bkagyin应助灵巧的之瑶采纳,获得10
2分钟前
lsx完成签到,获得积分10
2分钟前
杨震完成签到,获得积分10
2分钟前
无花果应助执剑燃此生采纳,获得10
2分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827212
求助须知:如何正确求助?哪些是违规求助? 3369573
关于积分的说明 10456454
捐赠科研通 3089256
什么是DOI,文献DOI怎么找? 1699738
邀请新用户注册赠送积分活动 817497
科研通“疑难数据库(出版商)”最低求助积分说明 770251