亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Self-Supervised Learning for Generic Raman Spectrum Denoising

化学 拉曼光谱 模式识别(心理学) 人工智能 光学 计算机科学 物理
作者
Siyi Wu,Yumin Zhang,Chang He,Zhewen Luo,Zhou Chen,Jian Ye
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (44): 17476-17485 被引量:2
标识
DOI:10.1021/acs.analchem.4c01550
摘要

Raman and surface-enhanced Raman scattering (SERS) spectroscopy are highly specific and sensitive optical modalities that have been extensively investigated in diverse applications. Noise reduction is demanding in the preprocessing procedure, especially for weak Raman/SERS spectra. Existing denoising methods require manual optimization of parameters, which is time-consuming and laborious and cannot always achieve satisfactory performance. Deep learning has been increasingly applied in Raman/SERS spectral denoising but usually requires massive training data, where the true labels may not exist. Aiming at these challenges, this work presents a generic Raman spectrum denoising algorithm with self-supervised learning for accurate, rapid, and robust noise reduction. A specialized network based on U-Net is established, which first extracts high-level features and then restores key peak profiles of the spectra. A subsampling strategy is proposed to refine the raw Raman spectrum and avoid the underlying biased interference. The effectiveness of the proposed approach has been validated by a broad range of spectral data, exhibiting its strong generalization ability. In the context of photosafe detection of deep-seated tumors, our method achieved signal-to-noise ratio enhancement by over 400%, which resulted in a significant increase in the limit of detection thickness from 10 to 18 cm. Our approach demonstrates superior denoising performance compared to the state-of-the-art denoising methods. The occlusion method further showed that the proposed algorithm automatically focuses on characterized peaks, enhancing the interpretability of our approach explicitly in Raman and SERS spectroscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
满意人英完成签到,获得积分10
14秒前
心灵美语兰完成签到 ,获得积分10
23秒前
28秒前
seven_74521发布了新的文献求助10
36秒前
41秒前
通科研完成签到 ,获得积分10
47秒前
在水一方应助seven_74521采纳,获得10
55秒前
1分钟前
ldqm发布了新的文献求助10
1分钟前
827584450应助zm采纳,获得10
1分钟前
zm完成签到,获得积分10
2分钟前
2分钟前
2分钟前
seven_74521发布了新的文献求助10
2分钟前
2分钟前
Wcy发布了新的文献求助10
2分钟前
深情安青应助Wcy采纳,获得10
3分钟前
fengfenghao完成签到,获得积分10
3分钟前
nicolaslcq完成签到,获得积分10
3分钟前
3分钟前
4分钟前
本本完成签到 ,获得积分10
4分钟前
任性大米完成签到 ,获得积分10
5分钟前
bc完成签到,获得积分0
5分钟前
nolan完成签到 ,获得积分10
5分钟前
小马甲应助科研通管家采纳,获得10
5分钟前
bc举报安静的火车求助涉嫌违规
6分钟前
6分钟前
6分钟前
激动的似狮完成签到,获得积分10
6分钟前
6分钟前
Wcy发布了新的文献求助10
6分钟前
XX完成签到,获得积分10
7分钟前
Beyond095完成签到 ,获得积分10
7分钟前
wanci应助Wcy采纳,获得10
7分钟前
所所应助XX采纳,获得10
7分钟前
8分钟前
朱佳慧发布了新的文献求助10
8分钟前
8分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780810
求助须知:如何正确求助?哪些是违规求助? 3326338
关于积分的说明 10226598
捐赠科研通 3041516
什么是DOI,文献DOI怎么找? 1669478
邀请新用户注册赠送积分活动 799063
科研通“疑难数据库(出版商)”最低求助积分说明 758732