聚醚酰亚胺
电磁屏蔽
碳纳米管
材料科学
复合材料
纳米管
纳米技术
聚合物
作者
Tianci Wang,Qian-Shan Xia,Xinzuo Huang,Yongzheng Wang,Bin Liu,Jintong Zhang,Li Tao
出处
期刊:Chinese Physics
[Science Press]
日期:2024-01-01
卷期号:73 (17): 178101-178101
标识
DOI:10.7498/aps.73.20240822
摘要
In practical applications, flexibility, lightweight, and high performance are the characteristics that polymer-based electromagnetic shielding materials should have. At present, it is still a great challenge to prepare polymer-based electromagnetic shielding materials with excellent conductivity, electromagnetic shielding properties, and mechanical properties. Therefore, in this work, single-walled carbon nanotubes/polyetherimide composite films are prepared by electrostatic spinning and vacuum-assisted filtration through using single-walled carbon nanotubes and polyetherimide as raw materials. By regulating the surface density of single-walled carbon nanotubes, the conductivity of the composite film can be enhanced to 1866 S/cm. For the electromagnetic shielding performance, the total electromagnetic shielding effectiveness of single-walled carbon nanotubes/polyetherimide composite film in Ku band (12–18 GHz) is in a range of 75.78–81.83 dB, which is higher than that of pure single-walled carbon nanotube film (65.19–69.81 dB). This is attributed to the formation of interfaces between the polyetherimide fibers and the single-walled carbon nanotubes, with more interfaces consuming more electromagnetic wave energy for a given range of single-walled carbon nanotube surface densities. For the mechanical properties, the maximum tensile strength and elongation at the break of the single-walled carbon nanotube/polyetherimide film are 1.13 and 1.5 times higher than those of the single-walled carbon nanotube film, with the values of 28.52 MPa and 7.91%, respectively. As the surface density of single-walled carbon nanotubes increases, the interaction between single-walled carbon nanotubes as well as the interaction between polyetherimide fibers and single-walled carbon nanotubes at the interface plays a role in enhancing the mechanical properties of the composite films. The single-walled carbon nanotube/polyetherimide composite films, as an excellent polymer-based electromagnetic shielding composite material, can be used in fields such as the protection of precision electronic instruments and wearable electronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI