电解质
金属锂
化学
阳极
无机化学
锂(药物)
金属
溶解
作文(语言)
材料科学
有机化学
电极
物理化学
哲学
内分泌学
医学
语言学
作者
Saul Perez Beltran,Perla B. Balbuena
标识
DOI:10.1016/j.jpowsour.2022.232203
摘要
The lithium metal battery is one of today's most promising high-energy-density storage devices. Its full-scale implementation depends on solving operational and safety issues intrinsic to the Li metal high reactivity leading to uncontrolled electrolyte decomposition and uneven Li deposition. In this work, we study the spontaneous formation of the solid electrolyte interphase (SEI) upon contact of Li metal with the electrolyte and describe the heterogeneous SEI morphological features. Multiple electrolyte formulations based on lithium bis(fluorosulfonyl)imide (LiFSI), dimethoxyethane (DME), dimethyl carbonate (DMC), 1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE) and bis(2,2,2-trifluoroethyl) ether (BTFE) are used. Findings include the description of the SEI evolution from dispersed LiO, LiS, LiN, and LiF clusters to a continuous and compact inorganic phase in which the LiO and LiF content depend on the presence of fluorine diluents. The role of the DME ether solvent helping the growth of a “wet-SEI” is compared to that of the highly unstable carbonate DMC, which decomposes into complex radical oligomers that might contribute to further electrolyte decomposition. The impact of the electrolyte-to-anode ratio on LiFSI decomposition is highlighted. Finally, we suggest the existence of a critical LiFSI concentration and electrolyte-to-anode ratio that could potentially balance the rate of electrolyte depletion and lithium consumption.
科研通智能强力驱动
Strongly Powered by AbleSci AI