A more novel and robust gene signature predicts outcome in patients with esophageal squamous cell carcinoma

基因签名 医学 免疫系统 肿瘤科 比例危险模型 队列 间质细胞 食管鳞状细胞癌 Lasso(编程语言) 基因 内科学 基因表达 癌症研究 免疫学 生物 生物化学 万维网 计算机科学
作者
Chao Ma,Huan Luo
出处
期刊:Clinics and Research in Hepatology and Gastroenterology [Elsevier BV]
卷期号:46 (10): 102033-102033 被引量:3
标识
DOI:10.1016/j.clinre.2022.102033
摘要

Esophageal squamous cell carcinoma (ESCC) is a life-threatening thoracic tumor with a poor prognosis. The tumor microenvironment (TME) mainly comprises tumor cells and tumor-infiltrating immune cells mixed with stromal components. The latest research has displayed that tumor immune cell infiltration (ICI) is closely connected with the ESCC patients' clinical prognosis. This study was designed to construct a gene signature based on the ICI of ESCC to predict prognosis. Based on the selection criteria we set, the eligible ESCC cases from the GSE53625 and TCGA-ESCA datasets were chosen for the training cohort and the validation cohort, respectively. Unsupervised clustering detailed grouped ESCC cases of the training cohort based on the ICI profile. We determined the differential expression genes (DEGs) between the ICI clusters, and, subsequently, we adopted the univariate Cox analysis to recognize DEGs with prognostic potential. These screened DEGs underwent a Lasso regression, which then generated a gene signature. The harvested signature's predictive ability was further examined by the Kaplan-Meier analysis, Cox analysis, ROC, IAUC, and IBS. More importantly, we listed similar studies in the most recent year and compared theirs with ours. We performed the functional annotation, immune relevant signature correlation analysis, and immune infiltrating analysis to thoroughly understand the functional mechanism of the signature and the immune cells' roles in the gene signature's predicting capacity. A sixteen-gene signature (ARSD, BCAT1, BIK, CLDN11, DLEU7-AS1, GGH, IGFBP2, LINC01037, LINC01446, LINC01497, M1AP, PCSK2, PCSK5, PPP2R2A, TIGD7, and TMSB4X) was generated from the Lasso model. We then confirmed the signature as having solid and stable prognostic capacity by several statistical methods. We revealed the superiority of our signature after comparing it to our predecessors, and the GSEA uncovered the specifically mechanism of action related to the gene signature. Two immune relevant signatures, including GZMA and LAG3 were identified associating with our signature. The immune-infiltrating analysis identified crucial roles of resting mast cells, which potentially support the sixteen-gene signature's prognosis ability. We discovered a robust sixteen-gene signature that can accurately predict ESCC prognosis. The immune relevant signatures, GZMA and LAG3, and resting mast cells infiltrating were closely linked to the sixteen-gene signature's ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CRANE完成签到 ,获得积分10
1秒前
XMUh发布了新的文献求助10
5秒前
夜夜发布了新的文献求助20
6秒前
小飞棍完成签到,获得积分10
9秒前
11秒前
cmwang发布了新的文献求助10
15秒前
沙沙完成签到 ,获得积分0
15秒前
曾经荔枝完成签到,获得积分10
16秒前
18秒前
科研er完成签到 ,获得积分10
20秒前
XMUh完成签到,获得积分10
21秒前
踏雪飞鸿发布了新的文献求助10
22秒前
带象发布了新的文献求助20
24秒前
义气发卡完成签到 ,获得积分10
30秒前
33秒前
35秒前
三国杀校老弟完成签到,获得积分10
38秒前
带象完成签到,获得积分10
40秒前
cmwang完成签到,获得积分10
44秒前
iNk应助秀丽笑容采纳,获得20
46秒前
活泼蜜蜂完成签到,获得积分10
49秒前
英俊的铭应助踏雪飞鸿采纳,获得10
59秒前
仁者无惧完成签到 ,获得积分10
1分钟前
1250241652完成签到,获得积分10
1分钟前
orixero应助拉布拉多多不多采纳,获得10
1分钟前
1分钟前
于芋菊完成签到,获得积分0
1分钟前
落后的凝梦完成签到 ,获得积分10
1分钟前
叶颜完成签到,获得积分10
1分钟前
1分钟前
科研通AI5应助小天采纳,获得10
1分钟前
1分钟前
momo完成签到,获得积分10
1分钟前
1分钟前
逍遥发布了新的文献求助10
1分钟前
1分钟前
科研通AI5应助坤坤采纳,获得10
1分钟前
丘比特应助坤坤采纳,获得10
1分钟前
daisy完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780394
求助须知:如何正确求助?哪些是违规求助? 3325781
关于积分的说明 10224254
捐赠科研通 3040879
什么是DOI,文献DOI怎么找? 1669087
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758649