Theoretical transfer path modeling and vibration optimization of an axial piston pump

作者
Shaogan Ye,Changjie Zheng,Yunqing Quan,Kefei Miao,Yue Bao,Huixiang Liu,Shoujun Zhao
出处
期刊:Journal of Vibration and Control [SAGE]
标识
DOI:10.1177/10775463251390420
摘要

Vibration reduction in axial piston pumps remains challenging due to the difficulty in identifying dominant transfer paths without extensive experimental data. This study proposes a novel power-based transfer path contribution methodology to achieve significant vibration mitigation within the pump system. Firstly, an experimentally validated dynamic model with 4 lumped mass points and 19 degrees of freedom is developed to systematically investigate vibration transmission mechanisms. Based on this theoretical model, we introduce a power-based ranking algorithm to quantitatively evaluate the contributions of dynamic movements and transfer paths to the overall vibration response. Results reveal that the end-cover is the primary radiating component, with rotational motion around the X EC axis being the dominant contributor to total vibration power. Theoretical transfer path analyses further identify PEC1 (cylinder force) and PEC3 (housing force) as the dominant vibration power transmission paths to the end-cover, while PEC2 (shaft force) also contributes significantly at specific frequencies. Based on these insights, a transfer path analysis (TPA)-guided optimization strategy combined with the single-objective genetic algorithm (GA) is implemented to minimize total vibration power by tuning the structural configuration and stiffness parameters of key connection components. The proposed method achieves substantial vibration reduction in the end-cover across multiple frequency bands and yields notable system-level improvements, including reduced housing vibration around the X H axis. These findings validate the theoretical foundation and demonstrate the practical value of the proposed approach for vibration control in hydraulic pumps.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助离线采纳,获得10
1秒前
1秒前
机会完成签到,获得积分10
1秒前
明理的梦竹完成签到,获得积分10
1秒前
2秒前
吖吖吖完成签到,获得积分10
3秒前
3秒前
如果我有狼尾巴关注了科研通微信公众号
3秒前
3秒前
Tloml-dw010530完成签到,获得积分10
4秒前
5秒前
暴躁的念之完成签到 ,获得积分10
6秒前
小莫完成签到 ,获得积分10
6秒前
称心怀莲完成签到,获得积分10
6秒前
柴米油盐发布了新的文献求助10
7秒前
滕皓轩发布了新的文献求助10
8秒前
小李叭叭发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
吉林发布了新的文献求助10
10秒前
11秒前
12秒前
李爱国应助樊焕焕采纳,获得10
12秒前
吱吱熊sama发布了新的文献求助10
13秒前
simon发布了新的文献求助10
14秒前
14秒前
15秒前
zhangmemng完成签到 ,获得积分10
16秒前
4qfguj发布了新的文献求助10
16秒前
小柒多多完成签到 ,获得积分10
17秒前
香菜张发布了新的文献求助10
17秒前
阿慧发布了新的文献求助10
17秒前
感冒药完成签到,获得积分10
18秒前
sang完成签到,获得积分10
18秒前
星辰大海应助111采纳,获得10
20秒前
帆帆发布了新的文献求助10
20秒前
4qfguj完成签到,获得积分10
21秒前
紫色茄子发布了新的文献求助10
23秒前
知更鸟完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295400
求助须知:如何正确求助?哪些是违规求助? 4444944
关于积分的说明 13834942
捐赠科研通 4329343
什么是DOI,文献DOI怎么找? 2376614
邀请新用户注册赠送积分活动 1371888
关于科研通互助平台的介绍 1337169