A domain adaptive fault diagnosis method for rolling bearing based on multi-layer convolution-guided transformer under variable working conditions

作者
Ying Xie,Yingjie Zhu,Xiaotong Wu
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE]
标识
DOI:10.1177/01423312251389238
摘要

Currently, deep learning technology shows significant advantages in improving the efficiency of rolling bearing fault diagnosis. However, the stability and generalization ability of these models are often weakened by complex and variable working conditions and constantly changing data distributions, which lead to poor diagnostic accuracy. To address the above problems, a domain adaptive fault diagnosis method based on multi-layer convolution-guided transformer (MCG-transformer) is proposed in this paper. First, for the inhomogeneity of information distribution in vibration signals, a time-frequency heterogeneous patch division strategy is proposed, while a DSC module is utilized to achieve efficient local time-frequency feature extraction. Second, a multi-layer transformer structure is constructed to enhance the model’s ability to model global dependencies and multi-scale fault features by the convolutional attention mechanism. Third, the classification loss and transfer loss are jointly optimized to achieve end-to-end transfer training on labeled target domains. This approach effectively balances training efficiency and diagnosis performance. Finally, experiments are conducted on Case Western Reserve University (CWRU) and Jiangnan University (JNU) bearing data sets to verify the effectiveness of the proposed method. The experimental results show that the method outperforms the existing mainstream models in fault diagnosis tasks under complex working conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘丰发布了新的文献求助10
刚刚
涂江渝完成签到 ,获得积分10
4秒前
NexusExplorer应助马上来采纳,获得10
4秒前
Vincent24S完成签到,获得积分10
13秒前
丘比特应助小付采纳,获得10
14秒前
ccm应助黄冠采纳,获得10
14秒前
11发布了新的文献求助10
15秒前
乐乐应助小猫采纳,获得10
15秒前
JAS发布了新的文献求助10
15秒前
BowieHuang应助伶俐的颤采纳,获得10
15秒前
小赵完成签到,获得积分10
17秒前
充电宝应助jhxie采纳,获得30
17秒前
马上来完成签到,获得积分10
18秒前
26秒前
11完成签到,获得积分10
27秒前
28秒前
外向太阳完成签到,获得积分10
30秒前
31秒前
李通通发布了新的文献求助30
37秒前
隐形曼青应助ai采纳,获得10
37秒前
小马甲应助cl采纳,获得10
39秒前
勤恳雅莉应助活泼山雁采纳,获得10
40秒前
赘婿应助油柑美式采纳,获得10
41秒前
44秒前
45秒前
47秒前
anwen发布了新的文献求助10
48秒前
小付发布了新的文献求助10
49秒前
无心的尔阳完成签到 ,获得积分10
51秒前
小猫发布了新的文献求助10
53秒前
54秒前
NICAI应助游侠EX采纳,获得10
56秒前
纯真的曼荷完成签到 ,获得积分10
56秒前
58秒前
追寻的访文完成签到,获得积分10
1分钟前
隐形曼青应助油柑美式采纳,获得10
1分钟前
1分钟前
张沁关注了科研通微信公众号
1分钟前
jhxie发布了新的文献求助30
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558160
求助须知:如何正确求助?哪些是违规求助? 4643117
关于积分的说明 14670585
捐赠科研通 4584558
什么是DOI,文献DOI怎么找? 2514964
邀请新用户注册赠送积分活动 1489078
关于科研通互助平台的介绍 1459713