皮质扩散性抑郁症
去极化
神经科学
神经重症监护
缺血
医学
皮质电图
脑电图
麻醉
心脏病学
心理学
内科学
偏头痛
作者
Jens P. Dreier,Martin Fabricius,Cenk Ayata,Oliver Sakowitz,C. William Shuttleworth,Christian Dohmen,Rudolf Graf,Peter Vajkoczy,Raimund Helbok,Michiyasu Suzuki,Alois Josef Schiefecker,Sebastian Major,Maren K. L. Winkler,Eun-Jeung Kang,Denny Milakara,Ana I Oliveira-Ferreira,Clemens Reiffurth,Gajanan S. Revankar,Kazutaka Sugimoto,Nora F. Dengler
标识
DOI:10.1177/0271678x16654496
摘要
Spreading depolarizations (SD) are waves of abrupt, near-complete breakdown of neuronal transmembrane ion gradients, are the largest possible pathophysiologic disruption of viable cerebral gray matter, and are a crucial mechanism of lesion development. Spreading depolarizations are increasingly recorded during multimodal neuromonitoring in neurocritical care as a causal biomarker providing a diagnostic summary measure of metabolic failure and excitotoxic injury. Focal ischemia causes spreading depolarization within minutes. Further spreading depolarizations arise for hours to days due to energy supply-demand mismatch in viable tissue. Spreading depolarizations exacerbate neuronal injury through prolonged ionic breakdown and spreading depolarization-related hypoperfusion (spreading ischemia). Local duration of the depolarization indicates local tissue energy status and risk of injury. Regional electrocorticographic monitoring affords even remote detection of injury because spreading depolarizations propagate widely from ischemic or metabolically stressed zones; characteristic patterns, including temporal clusters of spreading depolarizations and persistent depression of spontaneous cortical activity, can be recognized and quantified. Here, we describe the experimental basis for interpreting these patterns and illustrate their translation to human disease. We further provide consensus recommendations for electrocorticographic methods to record, classify, and score spreading depolarizations and associated spreading depressions. These methods offer distinct advantages over other neuromonitoring modalities and allow for future refinement through less invasive and more automated approaches.
科研通智能强力驱动
Strongly Powered by AbleSci AI