A label description space embedded model for zero-shot intelligent diagnosis of mechanical compound faults

断层(地质) 人工智能 特征向量 计算机科学 模式识别(心理学) 自编码 相似性(几何) 特征(语言学) 数据挖掘 深度学习 图像(数学) 语言学 地质学 哲学 地震学
作者
Saibo Xing,Yaguo Lei,Shuhui Wang,Na Lü,Naipeng Li
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:162: 108036-108036 被引量:87
标识
DOI:10.1016/j.ymssp.2021.108036
摘要

It has always been an issue of significance to diagnose compound faults of machines. Existing intelligent diagnosis methods have to be trained by sufficient data of each compound fault. However, both labeled and unlabeled data of mechanical compound faults are usually difficult to collect or even completely inaccessible for training in real scenarios. Therefore, compound faults are usually unseen fault patterns. Unseen fault patterns are those that have no labeled or unlabeled training data. Without training data of compound faults, the current intelligent diagnosis methods usually fail in recognizing compound faults. This paper proposes a zero-shot intelligent diagnosis method for unseen compound faults of machines. The proposed method contains three stages, i.e., the feature learning, pre-judgment and fault recognition. The key to this method is a label description space embedded model for intelligent fault diagnosis (LDS-IFD) in Stage 3. In LDS-IFD, a label description space (LDS) is built to construct the relationship among different fault patterns. LDS is embedded between the feature space (FS) and the health condition label space (HCLS). Then the projection between FS and LDS is constructed by a linear supervised autoencoder (LSAE). By similarity evaluation in LDS or FS, LDS-IFD is able to recognize mechanical compound faults when only the data of single faults are accessible for training. The proposed method is demonstrated on a bearing dataset and a planetary gearbox dataset. Results show that the proposed method is effective in diagnosing unseen compound faults of machines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
TaoJ应助谨慎枫叶采纳,获得10
1秒前
1秒前
ttttt完成签到,获得积分10
2秒前
2秒前
思源应助kzxy采纳,获得10
2秒前
我是老大应助Cindy采纳,获得10
3秒前
3秒前
赘婿应助受伤的老鼠采纳,获得10
4秒前
皮崇知发布了新的文献求助10
6秒前
DCC完成签到,获得积分10
7秒前
科研通AI5应助学术野猪采纳,获得10
7秒前
卓聪健发布了新的文献求助10
7秒前
zhanlang发布了新的文献求助10
8秒前
飞鸿踏雪泥完成签到 ,获得积分10
8秒前
8秒前
华仔应助KKK研采纳,获得10
9秒前
9秒前
归海一刀发布了新的文献求助70
9秒前
9秒前
一个达不刘完成签到,获得积分10
10秒前
Ccccc完成签到,获得积分10
10秒前
伶俐的化蛹完成签到,获得积分10
11秒前
科研通AI5应助tudou0210采纳,获得10
12秒前
12355发布了新的文献求助30
12秒前
12秒前
xh完成签到 ,获得积分10
13秒前
14秒前
柒号发布了新的文献求助10
15秒前
昵称发布了新的文献求助10
17秒前
17秒前
koi完成签到,获得积分10
18秒前
18秒前
梦醒时见你完成签到,获得积分10
18秒前
hw发布了新的文献求助30
18秒前
19秒前
ta完成签到,获得积分10
19秒前
12355完成签到,获得积分20
20秒前
汉斯小木屋完成签到,获得积分10
20秒前
高分求助中
Mass producing individuality 600
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826041
求助须知:如何正确求助?哪些是违规求助? 3368384
关于积分的说明 10450556
捐赠科研通 3087890
什么是DOI,文献DOI怎么找? 1698821
邀请新用户注册赠送积分活动 817155
科研通“疑难数据库(出版商)”最低求助积分说明 770065