铕
材料科学
纳米颗粒
微乳液
溶胶凝胶
光致发光
分析化学(期刊)
热处理
透射电子显微镜
水溶液
兴奋剂
化学工程
纳米技术
发光
化学
物理化学
色谱法
肺表面活性物质
复合材料
光电子学
工程类
作者
Hussein Fneich,Nathalie Gaumer,Stéphane Chaussedent,Ahmad Mehdi,Wilfried Blanc
出处
期刊:Materials
[Multidisciplinary Digital Publishing Institute]
日期:2021-03-25
卷期号:14 (7): 1607-1607
被引量:3
摘要
Europium (Eu)-doped silica nanoparticles have attracted great interest for different applications, in particular in biomedicine as biosensors or for tissue regeneration. Sol-gel is the most common process used to prepare those particles, with size varying from tens to hundreds of nanometers. In this article, we focus our attention on the comparison between two commonly used sol-gel derived methods: reverse microemulsion (for particles smaller than 100 nm) and Stöber method (for particles larger than 100 nm). Europium concentration was varied between 0.2 and 1 mol%, and the nanoparticle diameters were 10, 50 and 100 nm. The link between the local environment of europium ions and their optical properties was investigated and discussed. Using Transmission Electron Microscopy, nitrogen sorption, X-ray diffraction, Fourier-Transform Infra-Red and pulsed doubled Nd:YAG laser, we confirmed that fluorescence lifetime was improved by thermal treatment at 900 °C due to the elimination of aqueous environment and modification of structure disorder. The size of nanoparticles, the amount of europium and the thermal treatment of obtained materials influence the emission spectra and the decay curves of Eu3+.
科研通智能强力驱动
Strongly Powered by AbleSci AI