A Bi-Directional LSTM Network for Estimating Continuous Upper Limb Movement From Surface Electromyography

计算机科学 人工智能 肌电图 肘部 卷积神经网络 感知器 模式识别(心理学) 同步(交流) 人工神经网络 接头(建筑物) 计算机视觉 语音识别 工程类 物理医学与康复 频道(广播) 电信 外科 建筑工程 医学
作者
Chunsheng Ma,Lin Chen,Oluwarotimi Williams Samuel,Weiyu Guo,Hang Zhang,Stephen E. Greenwald,Lisheng Xu,Guanglin Li
出处
期刊:IEEE robotics and automation letters 卷期号:6 (4): 7217-7224 被引量:25
标识
DOI:10.1109/lra.2021.3097272
摘要

In human-machine interaction systems, continuous movement estimation methods occupy an important position because they are more natural and intuitive than pattern-recognition methods. Essentially, arm position is decided by the shoulder and elbow joint angles. However, the various deformations of muscles around the shoulder and elbow often lead to difficulties in sensor fixation, which results in a loss of synchronization between the surface electromyography (sEMG) signals and joint angles. In order to accurately estimate movement angles using sEMG in situations where the sEMG is not synchronized with joint angles, we utilized a bi-directional long short-term memory (Bi-LSTM) network rather than other deep learning methods to estimate non-dominant arm movements, based on the sEMG signal from the dominant arm. This estimation protocol was designed to avoid a multiplicity of sensors and to simulate more complicated loss of synchronization problems). The performance of the Bi-LSTM was compared with multilayer perceptrons (MLPs), convolutional neural networks (CNNs), and a long short-term memory network (LSTM). The Pearson correlation coefficient (cc) between the estimated and target joint angle sequences was calculated to evaluate the performance of each neural network. The Wilcoxon signed-rank results showed that the Bi-LSTM model significantly outperformed the MLP, CNN, and LSTM models (tested with completely untrained newly recorded free movements).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研助手6应助飞羽采纳,获得10
刚刚
zzzzzwj发布了新的文献求助10
1秒前
科目三应助xuanxuan采纳,获得10
1秒前
Lucas应助早睡无黑眼圈采纳,获得10
2秒前
尊敬鸵鸟完成签到,获得积分10
2秒前
seata发布了新的文献求助10
3秒前
ding应助憂xqc采纳,获得10
3秒前
rr完成签到,获得积分10
4秒前
梅竹发布了新的文献求助10
5秒前
Hrentiken完成签到,获得积分10
5秒前
有魅力敏完成签到,获得积分10
5秒前
6秒前
6秒前
柠檬西米露完成签到,获得积分10
7秒前
8秒前
heiye完成签到,获得积分10
9秒前
科研通AI5应助正直的夏真采纳,获得10
10秒前
liudy发布了新的文献求助10
10秒前
11秒前
hhh发布了新的文献求助10
11秒前
mrhughas发布了新的文献求助10
11秒前
12秒前
梅竹完成签到,获得积分10
13秒前
李敖完成签到,获得积分10
13秒前
13秒前
小慧完成签到,获得积分10
13秒前
思源应助路人乙采纳,获得10
14秒前
15秒前
Skywalker完成签到,获得积分10
16秒前
16秒前
123456发布了新的文献求助10
17秒前
科研通AI5应助july13采纳,获得10
18秒前
丁真先生发布了新的文献求助10
19秒前
19秒前
20秒前
丘比特应助谨慎的擎宇采纳,获得10
21秒前
zzzzzwj完成签到,获得积分20
21秒前
21秒前
ZeSheng完成签到,获得积分10
22秒前
格格完成签到,获得积分10
23秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812981
求助须知:如何正确求助?哪些是违规求助? 3357430
关于积分的说明 10386520
捐赠科研通 3074600
什么是DOI,文献DOI怎么找? 1688950
邀请新用户注册赠送积分活动 812395
科研通“疑难数据库(出版商)”最低求助积分说明 767088