多硫化物
催化作用
硫族元素
氧化还原
分解
锂(药物)
杂原子
化学
动力学
硫黄
无机化学
材料科学
化学工程
物理化学
结晶学
有机化学
电解质
电极
内分泌学
工程类
物理
医学
量子力学
戒指(化学)
作者
Zhihao Zeng,Wei Nong,Yan Li,Chengxin Wang
出处
期刊:Advanced Science
[Wiley]
日期:2021-10-20
卷期号:8 (23): e2102809-e2102809
被引量:99
标识
DOI:10.1002/advs.202102809
摘要
Abstract The sulfur redox kinetics critically matters to superior lithium–sulfur (Li–S) batteries, for which single atom catalysts (SACs) take effect on promoting Li 2 S redox process and mitigating the shuttle behavior of lithium polysulfide (LiPs). However, conventional trial‐and‐error strategy significantly slows down the development of SACs in Li–S batteries. Here, the Li 2 S oxidation processes over MN 4 @G catalysts are fully explored and energy barrier of Li 2 S decomposition ( E b ) is identified to correlate strongly with three parameters of energy difference between initial and final states of Li 2 S decomposition, reaction energy of Li 2 S oxidation and LiS bond strength. These three parameters can serve as efficient descriptors by which two excellent SACs of MoN 4 @G and WN 4 @G are screened which give rise to E b values of 0.58 and 0.55 eV, respectively, outperforming other analogues in adsorbing LiPs and accelerating the redox kinetics of Li 2 S. This method can be extended to a wider range of SACs by coupling MN 4 moiety with heterostructures and heteroatoms beyond N where WN 4 @G/TiS 2 heterointerface is predicted to exhibit enhanced catalytic performance for Li 2 S decomposition with E b of 0.40 eV. This work will help accelerate the process of designing a wider range of efficient catalysts in Li–S batteries and even beyond, e.g. alkali‐ion‐Chalcogen batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI