MDD-TSVM: A novel semisupervised-based method for major depressive disorder detection using electroencephalogram signals

重性抑郁障碍 支持向量机 人工智能 脑电图 模式识别(心理学) 计算机科学 心情 机器学习 心理学 精神科
作者
Hongtuo Lin,Chufan Jian,Yang Cao,Xiaoguang Ma,Hailiang Wang,Fen Miao,Xiaomao Fan,Jinzhu Yang,Gansen Zhao,Hui Zhou
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:140: 105039-105039 被引量:12
标识
DOI:10.1016/j.compbiomed.2021.105039
摘要

Major depressive disorder (MDD) is a common mental illness characterized by persistent feeling of depressed mood and loss of interest. It would cause, in a severe case, suicide behaviors. In clinical settings, automatic MDD detection is mainly based on electroencephalogram (EEG) signals with supervised learning techniques. However, supervised-based MDD detection methods encounter two ineviTable bottlenecks: firstly, such methods rely heavily on an EEG training dataset with MDD labels annotated by a physical therapist, leading to subjectivity and high cost; secondly, most of EEG signals are unlabeled in a real scenario. In this paper, a novel semisupervised-based MDD detection method named MDD-TSVM is presented. Specifically, the MDD-TSVM utilizes the semisupervised method of transductive support vector machine (TSVM) as its backbone, further dividing the unlabeled penalty item of the TSVM objective function into two pseudo-labeled penalty items with or without MDD. By such improvement, the MDD-SVM can make full use of labeled and unlabeled datasets as well as alleviate the class imbalance problem. Experiment results showed that our proposed MDD-TSVM achieved F1 score of 0.85 ± 0.05 and accuracy of 0.89 ± 0.03 on identifying MDD patients, which is superior to the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hello应助kk采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
Akim应助Aisha采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得30
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
Jo应助科研通管家采纳,获得20
2秒前
科研通AI6应助科研通管家采纳,获得30
2秒前
2秒前
轻松的若南完成签到,获得积分10
2秒前
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
2秒前
FashionBoy应助笨笨芯采纳,获得10
2秒前
3秒前
3秒前
3秒前
子车茗应助活泼的飞鸟采纳,获得30
4秒前
充电宝应助幸运的尔芙采纳,获得10
4秒前
洁净芸遥发布了新的文献求助10
5秒前
bingbing发布了新的文献求助10
5秒前
5秒前
5秒前
勤奋的火龙果完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
Orange应助酷不哭哭采纳,获得10
7秒前
盛乾衣完成签到,获得积分10
7秒前
wangzheng发布了新的文献求助10
8秒前
8秒前
8秒前
8R60d8应助轻松的若南采纳,获得10
8秒前
李星星发布了新的文献求助10
9秒前
大模型应助万书白采纳,获得10
9秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4406252
求助须知:如何正确求助?哪些是违规求助? 3891566
关于积分的说明 12110588
捐赠科研通 3536583
什么是DOI,文献DOI怎么找? 1940633
邀请新用户注册赠送积分活动 981360
科研通“疑难数据库(出版商)”最低求助积分说明 877892