MDD-TSVM: A novel semisupervised-based method for major depressive disorder detection using electroencephalogram signals

重性抑郁障碍 支持向量机 人工智能 脑电图 模式识别(心理学) 计算机科学 心情 机器学习 心理学 精神科
作者
Hongtuo Lin,Chufan Jian,Yang Cao,Xiaoguang Ma,Hailiang Wang,Fen Miao,Xiaomao Fan,Jinzhu Yang,Gansen Zhao,Hui Zhou
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:140: 105039-105039 被引量:9
标识
DOI:10.1016/j.compbiomed.2021.105039
摘要

Major depressive disorder (MDD) is a common mental illness characterized by persistent feeling of depressed mood and loss of interest. It would cause, in a severe case, suicide behaviors. In clinical settings, automatic MDD detection is mainly based on electroencephalogram (EEG) signals with supervised learning techniques. However, supervised-based MDD detection methods encounter two ineviTable bottlenecks: firstly, such methods rely heavily on an EEG training dataset with MDD labels annotated by a physical therapist, leading to subjectivity and high cost; secondly, most of EEG signals are unlabeled in a real scenario. In this paper, a novel semisupervised-based MDD detection method named MDD-TSVM is presented. Specifically, the MDD-TSVM utilizes the semisupervised method of transductive support vector machine (TSVM) as its backbone, further dividing the unlabeled penalty item of the TSVM objective function into two pseudo-labeled penalty items with or without MDD. By such improvement, the MDD-SVM can make full use of labeled and unlabeled datasets as well as alleviate the class imbalance problem. Experiment results showed that our proposed MDD-TSVM achieved F1 score of 0.85 ± 0.05 and accuracy of 0.89 ± 0.03 on identifying MDD patients, which is superior to the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助大方研究生采纳,获得10
1秒前
芷莯发布了新的文献求助10
1秒前
1秒前
雍以菱完成签到,获得积分10
2秒前
3秒前
动听靖发布了新的文献求助10
3秒前
2024dsb完成签到 ,获得积分10
3秒前
3秒前
乐乐应助科研小民工采纳,获得100
4秒前
4秒前
藜誌完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
17858925711关注了科研通微信公众号
5秒前
酷波er应助yoyo采纳,获得10
5秒前
高高访文完成签到,获得积分10
6秒前
科研通AI5应助欣欣杨采纳,获得10
6秒前
Sun发布了新的文献求助10
7秒前
希望天下0贩的0应助jeronimo采纳,获得10
7秒前
xy发布了新的文献求助10
7秒前
SciGPT应助weizhao采纳,获得10
7秒前
一只橙子完成签到,获得积分10
7秒前
9秒前
友好的海之完成签到,获得积分10
9秒前
wanci应助幸福广山采纳,获得10
10秒前
zhoup完成签到,获得积分10
11秒前
刘源文发布了新的文献求助10
12秒前
13秒前
闾丘惜寒完成签到,获得积分10
13秒前
13秒前
13秒前
Cocoa发布了新的文献求助10
14秒前
14秒前
15秒前
16秒前
大胆的问夏完成签到,获得积分10
16秒前
宋德宇完成签到,获得积分10
16秒前
ll应助故意的初阳采纳,获得10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790056
求助须知:如何正确求助?哪些是违规求助? 3334710
关于积分的说明 10271870
捐赠科研通 3051185
什么是DOI,文献DOI怎么找? 1674513
邀请新用户注册赠送积分活动 802634
科研通“疑难数据库(出版商)”最低求助积分说明 760828