Machine Learning Glove Using Self-Powered Conductive Superhydrophobic Triboelectric Textile for Gesture Recognition in VR/AR Applications

有线手套 摩擦电效应 手势 计算机科学 手势识别 织物 虚拟现实 接口(物质) 人机交互 人工智能 材料科学 最大气泡压力法 气泡 复合材料 并行计算
作者
Feng Wen,Zhongda Sun,Tianyiyi He,Qiongfeng Shi,Minglu Zhu,Zixuan Zhang,Lianhui Li,Ting Zhang,Chengkuo Lee
出处
期刊:Elements [Mineralogical Society of America]
摘要

The rapid progress of Internet of things (IoT) technology raises an imperative demand on human machine interfaces (HMIs) which provide a critical linkage between human and machines. Using a glove as an intuitive and low-cost HMI can expediently track the motions of human fingers, resulting in a straightforward communication media of human-machine interactions. When combining several triboelectric textile sensors and proper machine learning technique, it has great potential to realize complex gesture recognition with the minimalist-designed glove for the comprehensive control in both real and virtual space. However, humidity or sweat may negatively affect the triboelectric output as well as the textile itself. Hence, in this work, a facile carbon nanotubes/thermoplastic elastomer (CNTs/TPE) coating approach is investigated in detail to achieve superhydrophobicity of the triboelectric textile for performance improvement. With great energy harvesting and human motion sensing capabilities, the glove using the superhydrophobic textile realizes a low-cost and self-powered interface for gesture recognition. By leveraging machine learning technology, various gesture recognition tasks are done in real time by using gestures to achieve highly accurate virtual reality/augmented reality (VR/AR) controls including gun shooting, baseball pitching, and flower arrangement, with minimized effect from sweat during operation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助无畏山海采纳,获得10
1秒前
1秒前
2秒前
金黎发布了新的文献求助10
3秒前
Hello应助萱萱采纳,获得10
3秒前
机灵柚子应助萱萱采纳,获得10
4秒前
机灵柚子应助萱萱采纳,获得10
4秒前
机灵柚子应助萱萱采纳,获得10
4秒前
机灵柚子应助萱萱采纳,获得10
4秒前
慕青应助萱萱采纳,获得10
4秒前
Rubby应助萱萱采纳,获得10
4秒前
4秒前
科目三应助萱萱采纳,获得10
4秒前
隐形曼青应助萱萱采纳,获得10
4秒前
jdbd完成签到 ,获得积分10
5秒前
6秒前
研友_842M4n完成签到,获得积分10
6秒前
852应助sdl采纳,获得10
7秒前
再慕完成签到,获得积分10
7秒前
7秒前
7秒前
Zel博博应助宁annie采纳,获得20
8秒前
xixi很困发布了新的文献求助10
10秒前
Owen应助Knight采纳,获得30
10秒前
10秒前
豆豆发布了新的文献求助10
11秒前
小马甲应助再慕采纳,获得10
12秒前
苗苗完成签到,获得积分10
12秒前
12秒前
14秒前
14秒前
无花果应助萱萱采纳,获得10
14秒前
机灵柚子应助萱萱采纳,获得10
14秒前
万能图书馆应助xie采纳,获得10
14秒前
科目三应助萱萱采纳,获得10
14秒前
蛇從革应助萱萱采纳,获得30
15秒前
所所应助萱萱采纳,获得10
15秒前
上官若男应助萱萱采纳,获得10
15秒前
jie应助萱萱采纳,获得10
15秒前
jie应助萱萱采纳,获得10
15秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4100867
求助须知:如何正确求助?哪些是违规求助? 3638670
关于积分的说明 11530769
捐赠科研通 3347458
什么是DOI,文献DOI怎么找? 1839660
邀请新用户注册赠送积分活动 906912
科研通“疑难数据库(出版商)”最低求助积分说明 824110