已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning-based Prediction of Prolonged Intensive Care Unit Stay for Critical Patients with Spinal Cord Injury

医学 脊髓损伤 逻辑回归 重症监护 曲线下面积 急诊医学 机器学习 重症监护室 回顾性队列研究 重症监护医学 内科学 脊髓 精神科 计算机科学
作者
Guoxin Fan,Sheng Yang,Huaqing Liu,Ningze Xu,Yuyong Chen,Jie He,Xiuyun Su,Mao Pang,Bin Liu,Lanqing Han,Limin Rong
出处
期刊:Spine [Ovid Technologies (Wolters Kluwer)]
卷期号:47 (9): E390-E398 被引量:52
标识
DOI:10.1097/brs.0000000000004267
摘要

Study Design. A retrospective cohort study. Objective. The objective of the study was to develop machine-learning (ML) classifiers for predicting prolonged intensive care unit (ICU)-stay and prolonged hospital-stay for critical patients with spinal cord injury (SCI). Summary of Background Data. Critical patients with SCI in ICU need more attention. SCI patients with prolonged stay in ICU usually occupy vast medical resources and hinder the rehabilitation deployment. Methods. A total of 1599 critical patients with SCI were included in the study and labeled with prolonged stay or normal stay. All data were extracted from the eICU Collaborative Research Database and the Medical Information Mart for Intensive Care III-IV Database. The extracted data were randomly divided into training, validation and testing (6:2:2) subdatasets. A total of 91 initial ML classifiers were developed, and the top three initial classifiers with the best performance were further stacked into an ensemble classifier with logistic regressor. The area under the curve (AUC) was the main indicator to assess the prediction performance of all classifiers. The primary predicting outcome was prolonged ICU-stay, while the secondary predicting outcome was prolonged hospital-stay. Results. In predicting prolonged ICU-stay, the AUC of the ensemble classifier was 0.864 ± 0.021 in the three-time five-fold cross-validation and 0.802 in the independent testing. In predicting prolonged hospital-stay, the AUC of the ensemble classifier was 0.815 ± 0.037 in the three-time five-fold cross-validation and 0.799 in the independent testing. Decision curve analysis showed the merits of the ensemble classifiers, as the curves of the top three initial classifiers varied a lot in either predicting prolonged ICU-stay or discriminating prolonged hospital-stay. Conclusion. The ensemble classifiers successfully predict the prolonged ICU-stay and the prolonged hospital-stay, which showed a high potential of assisting physicians in managing SCI patients in ICU and make full use of medical resources. Level of Evidence: 3
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leena完成签到 ,获得积分10
1秒前
4秒前
邢大志完成签到,获得积分20
4秒前
才怪完成签到 ,获得积分10
5秒前
领导范儿应助满意妙梦采纳,获得10
6秒前
杜涵发布了新的文献求助10
6秒前
shuiyi发布了新的文献求助10
8秒前
瑶阿瑶完成签到,获得积分10
8秒前
走啊走完成签到,获得积分10
11秒前
zrk发布了新的文献求助10
12秒前
修fei完成签到 ,获得积分10
15秒前
ryan完成签到,获得积分10
15秒前
个性半山完成签到 ,获得积分10
16秒前
佟语雪完成签到,获得积分10
17秒前
王富贵发布了新的文献求助10
17秒前
Ak完成签到,获得积分0
17秒前
17秒前
17秒前
打打应助科研通管家采纳,获得10
17秒前
Criminology34应助科研通管家采纳,获得10
17秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
Criminology34应助科研通管家采纳,获得10
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
Criminology34应助科研通管家采纳,获得10
18秒前
18秒前
研友_VZG7GZ应助科研通管家采纳,获得10
18秒前
张ZWY完成签到 ,获得积分10
19秒前
左江夜渔人完成签到,获得积分20
19秒前
20秒前
xwwx完成签到 ,获得积分10
24秒前
24秒前
菜菜完成签到 ,获得积分10
25秒前
25秒前
Sakura完成签到 ,获得积分10
26秒前
zhong完成签到 ,获得积分10
26秒前
随机应变发布了新的文献求助10
28秒前
28秒前
QUPY发布了新的文献求助10
33秒前
36秒前
BetterH完成签到 ,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599548
求助须知:如何正确求助?哪些是违规求助? 4685229
关于积分的说明 14838214
捐赠科研通 4669062
什么是DOI,文献DOI怎么找? 2538076
邀请新用户注册赠送积分活动 1505449
关于科研通互助平台的介绍 1470833