Machine Learning-based Prediction of Prolonged Intensive Care Unit Stay for Critical Patients with Spinal Cord Injury

医学 脊髓损伤 逻辑回归 重症监护 曲线下面积 急诊医学 机器学习 重症监护室 回顾性队列研究 重症监护医学 内科学 脊髓 计算机科学 精神科
作者
Guoxin Fan,Sheng Yang,Huaqing Liu,Ningze Xu,Yuyong Chen,Jie He,Xiuyun Su,Mao Pang,Bin Liu,Lanqing Han,Limin Rong
出处
期刊:Spine [Lippincott Williams & Wilkins]
卷期号:47 (9): E390-E398 被引量:20
标识
DOI:10.1097/brs.0000000000004267
摘要

A retrospective cohort study.The objective of the study was to develop machine-learning (ML) classifiers for predicting prolonged intensive care unit (ICU)-stay and prolonged hospital-stay for critical patients with spinal cord injury (SCI).Critical patients with SCI in ICU need more attention. SCI patients with prolonged stay in ICU usually occupy vast medical resources and hinder the rehabilitation deployment.A total of 1599 critical patients with SCI were included in the study and labeled with prolonged stay or normal stay. All data were extracted from the eICU Collaborative Research Database and the Medical Information Mart for Intensive Care III-IV Database. The extracted data were randomly divided into training, validation and testing (6:2:2) subdatasets. A total of 91 initial ML classifiers were developed, and the top three initial classifiers with the best performance were further stacked into an ensemble classifier with logistic regressor. The area under the curve (AUC) was the main indicator to assess the prediction performance of all classifiers. The primary predicting outcome was prolonged ICU-stay, while the secondary predicting outcome was prolonged hospital-stay.In predicting prolonged ICU-stay, the AUC of the ensemble classifier was 0.864 ± 0.021 in the three-time five-fold cross-validation and 0.802 in the independent testing. In predicting prolonged hospital-stay, the AUC of the ensemble classifier was 0.815 ± 0.037 in the three-time five-fold cross-validation and 0.799 in the independent testing. Decision curve analysis showed the merits of the ensemble classifiers, as the curves of the top three initial classifiers varied a lot in either predicting prolonged ICU-stay or discriminating prolonged hospital-stay.The ensemble classifiers successfully predict the prolonged ICU-stay and the prolonged hospital-stay, which showed a high potential of assisting physicians in managing SCI patients in ICU and make full use of medical resources.Level of Evidence: 3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ZZ0901完成签到,获得积分10
2秒前
yuaner发布了新的文献求助10
2秒前
mola完成签到,获得积分10
2秒前
3秒前
流年完成签到 ,获得积分10
3秒前
邵洋发布了新的文献求助10
3秒前
阿伟完成签到,获得积分10
3秒前
3秒前
Re完成签到,获得积分10
4秒前
Yu发布了新的文献求助10
4秒前
胡凤凰完成签到,获得积分20
4秒前
安详盼波发布了新的文献求助10
4秒前
5秒前
打打应助杨yang采纳,获得10
5秒前
5秒前
蒋瑞轩发布了新的文献求助10
5秒前
6秒前
Hollow完成签到,获得积分10
7秒前
王一g完成签到,获得积分10
8秒前
fash发布了新的文献求助10
8秒前
8秒前
胡凤凰发布了新的文献求助20
9秒前
wuxunxun2015发布了新的文献求助10
9秒前
10秒前
FashionBoy应助先一采纳,获得10
11秒前
漂泊发布了新的文献求助10
11秒前
蒋瑞轩完成签到,获得积分10
12秒前
Oculus完成签到 ,获得积分10
12秒前
13秒前
panya完成签到,获得积分10
14秒前
15秒前
Zel博博完成签到,获得积分10
16秒前
16秒前
安详盼波完成签到,获得积分10
16秒前
兮兮完成签到,获得积分10
17秒前
GSY完成签到,获得积分10
17秒前
luf完成签到,获得积分10
18秒前
杨yang发布了新的文献求助10
18秒前
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783630
求助须知:如何正确求助?哪些是违规求助? 3328771
关于积分的说明 10238554
捐赠科研通 3044083
什么是DOI,文献DOI怎么找? 1670795
邀请新用户注册赠送积分活动 799874
科研通“疑难数据库(出版商)”最低求助积分说明 759171