流出物
废水
烟气脱硫
化学
蒸馏
制浆造纸工业
结晶
蒸发
试剂
工业废水处理
环境化学
色谱法
环境科学
环境工程
有机化学
物理
工程类
热力学
作者
Haoran Feng,Min Liu,Wei Zeng,Ying Chen,Mengzhe Wang,Lin Yuan,Zhilong Yu
标识
DOI:10.1016/j.envres.2021.112317
摘要
The evaporation concentrate of gas field wastewater (EC-GFW) is a new type of refractory actual wastewater produced by the three-effect evaporation of gas field wastewater, exhibiting extremely high salinity and complex organic components. This study proposed a set of processes consisting of AOPs, precipitation, distillation, and crystallization for the systematic treatment of EC-GFW. In this paper, the optimal conditions for the processes after pre-treatment were investigated. The optimal operating parameters of UV/Fenton process were determined to be 180 min of reaction time, 4 of initial pH, 0.6 mol/L of H2O2 dosage, 10:1 of n(H2O2): n(Fe2+) value, and 30 W of UV power. Fenton's reagent was added in two steps (0 min and 90 min) for effective utilization. The results showed that the TOC (Total organic carbon) removal efficiency during the two-stage oxidation reached 93% with TOC in the effluent of 132 mg/L. Then, 82.3% of sulfate ions were removed by the desulfurization process using 50 g/L of CaCl2 within 10 min at a pH of 5 before distillation. It was found that the TOC in the influent of distillation played a decisive role in the quality of the effluent and purity of the crystalline salt, which was expected to be controlled lower than 132 mg/L. The final condensate could utilize to reuse, 99% of main pollutants of which have been removed, reducing the pressure of water supply on site. Simultaneously, the industrial-grade NaCl with extensive application prospect can be recovered. The harmless disposal and resource utilization of EC-GFW was achieved on a laboratory scale, providing the data support and theoretical guidance for treating EC-GFW at gas field project site.
科研通智能强力驱动
Strongly Powered by AbleSci AI