A Collision Avoidance Algorithm for Human Motion Prediction Based on Perceived Risk of Collision: Part 1-Model Development

运动(物理) 碰撞 计算机科学 障碍物 避碰 任务(项目管理) 人工智能 机器学习 汽车工业 算法 模拟 工程类 计算机安全 系统工程 政治学 法学 航空航天工程
作者
James Yang,Brad Howard,Juan Baus
出处
期刊:IISE transactions on occupational ergonomics and human factors [Taylor & Francis]
卷期号:9 (3-4): 199-210 被引量:4
标识
DOI:10.1080/24725838.2021.1973613
摘要

OCCUPATIONAL APPLICATIONSDigital human models have been widely used in occupational biomechanics assessments to prevent potential injury risks, such as automotive assembly lines, box lifting, patient repositioning, and the mining industry. Motion prediction is one of the important capabilities in digital human models, and collision avoidance is involved in human motion prediction. We propose an algorithm that will ensure human motions are predicted realistically, and finally, use of this algorithm could help enhance the accuracy of injury risk assessments using digital human models.TECHNICAL ABSTRACTBackground: Humans perform daily tasks such as reaching around an obstacle with ease, even though the complexities of such behavior are largely hidden from those performing them. Optimization-based motion prediction has employed numerical methods in order to predict human movements. However, these movements are heavily constrained, such that the planning of the motion is explicitly provided in the optimization formulation of the problem. This implies that for each task a unique optimization formulation is needed, which relies heavily on the experience of the code developer to provide these constraints.Purpose: Cognitive psychology has focused on the reasoning or motivation behind the planning of movements and provides an opportunity for digital human modeling to adopt these theories to provide a more general or versatile motion prediction framework. Humans tend to overestimate the risk associated with colliding with objects during movement. We present the formulation of a collision avoidance algorithm that considers the perceived risk, for future use in a human motion prediction application.Methods: An experiment was completed to evaluate human performance when avoiding obstacles during movement. Using Bayesian inference, perceived risk was modeled and minimized for use in human motion prediction.Results: The experimental results were used to derive a formula in which the perceived risk associated with the task could be quantified in a gain/loss context. Overestimation of risk by a subject was modeled using the observed behavior and the results of simulations based on the parameterized risk model are presented.Conclusions: The algorithm presented, based on the perceived risk of collision, can be integrated into human motion prediction to generate realistic human motion considering collision avoidance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
儒雅曼岚完成签到,获得积分20
刚刚
刚刚
1秒前
田様应助bernoulli采纳,获得10
2秒前
小雨堂完成签到 ,获得积分10
4秒前
爸爸_爸爸_帮帮我完成签到,获得积分10
5秒前
刘三哥完成签到 ,获得积分10
5秒前
pluto应助兜兜采纳,获得20
6秒前
11秒前
14秒前
雨堂完成签到 ,获得积分10
15秒前
qiushui发布了新的文献求助10
16秒前
儒雅曼岚发布了新的文献求助10
16秒前
wwwwrrrrr完成签到,获得积分10
17秒前
Malmever发布了新的文献求助10
18秒前
漂亮幻莲发布了新的文献求助10
22秒前
qiushui完成签到,获得积分10
22秒前
Owen应助胡庆余堂小洋参采纳,获得10
26秒前
29秒前
科研通AI5应助Malmever采纳,获得10
31秒前
lmy完成签到,获得积分10
31秒前
听海完成签到 ,获得积分10
35秒前
落寞依珊发布了新的文献求助10
36秒前
star完成签到,获得积分10
39秒前
xie关注了科研通微信公众号
39秒前
bernoulli完成签到,获得积分10
41秒前
41秒前
爱科研的小虞完成签到 ,获得积分10
42秒前
zhukun完成签到,获得积分10
43秒前
可爱的函函应助ZZC采纳,获得10
44秒前
45秒前
45秒前
47秒前
Dellamoffy完成签到,获得积分10
47秒前
青山完成签到 ,获得积分10
49秒前
chonger完成签到,获得积分10
49秒前
斯文败类应助糖果乖乖采纳,获得10
51秒前
青云完成签到,获得积分10
51秒前
bernoulli发布了新的文献求助10
51秒前
贤惠的小夏完成签到,获得积分10
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780426
求助须知:如何正确求助?哪些是违规求助? 3325838
关于积分的说明 10224370
捐赠科研通 3040879
什么是DOI,文献DOI怎么找? 1669111
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758649