Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis

医学 荟萃分析 医学影像学 系统回顾 梅德林 医学物理学 计算机科学 人工智能 病理 化学 生物化学
作者
Ravi Aggarwal,Viknesh Sounderajah,Guy Martin,Daniel Shu Wei Ting,Alan Karthikesalingam,Dominic King,Hutan Ashrafian,Ara Darzi
出处
期刊:npj digital medicine [Nature Portfolio]
卷期号:4 (1) 被引量:603
标识
DOI:10.1038/s41746-021-00438-z
摘要

Deep learning (DL) has the potential to transform medical diagnostics. However, the diagnostic accuracy of DL is uncertain. Our aim was to evaluate the diagnostic accuracy of DL algorithms to identify pathology in medical imaging. Searches were conducted in Medline and EMBASE up to January 2020. We identified 11,921 studies, of which 503 were included in the systematic review. Eighty-two studies in ophthalmology, 82 in breast disease and 115 in respiratory disease were included for meta-analysis. Two hundred twenty-four studies in other specialities were included for qualitative review. Peer-reviewed studies that reported on the diagnostic accuracy of DL algorithms to identify pathology using medical imaging were included. Primary outcomes were measures of diagnostic accuracy, study design and reporting standards in the literature. Estimates were pooled using random-effects meta-analysis. In ophthalmology, AUC's ranged between 0.933 and 1 for diagnosing diabetic retinopathy, age-related macular degeneration and glaucoma on retinal fundus photographs and optical coherence tomography. In respiratory imaging, AUC's ranged between 0.864 and 0.937 for diagnosing lung nodules or lung cancer on chest X-ray or CT scan. For breast imaging, AUC's ranged between 0.868 and 0.909 for diagnosing breast cancer on mammogram, ultrasound, MRI and digital breast tomosynthesis. Heterogeneity was high between studies and extensive variation in methodology, terminology and outcome measures was noted. This can lead to an overestimation of the diagnostic accuracy of DL algorithms on medical imaging. There is an immediate need for the development of artificial intelligence-specific EQUATOR guidelines, particularly STARD, in order to provide guidance around key issues in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菲硕发布了新的文献求助10
刚刚
浮游应助Lillian采纳,获得10
刚刚
刚刚
刚刚
善良又亦完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
NexusExplorer应助芜湖芜湖采纳,获得10
1秒前
1秒前
Akim应助zrt采纳,获得10
1秒前
赘婿应助小包子采纳,获得10
2秒前
2秒前
九三完成签到,获得积分10
2秒前
2秒前
英姑应助Re采纳,获得10
2秒前
Eason小川发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
小硕土川完成签到,获得积分10
4秒前
古月发布了新的文献求助10
4秒前
4秒前
4秒前
LPVV发布了新的文献求助10
4秒前
香蕉觅云应助冷傲的储采纳,获得10
5秒前
5秒前
5秒前
xiangxl完成签到,获得积分10
6秒前
6秒前
小二郎应助感动安露采纳,获得10
7秒前
7秒前
7秒前
8秒前
田田圈发布了新的文献求助10
8秒前
9秒前
浮生若梦完成签到,获得积分10
9秒前
田様应助chenjun7080采纳,获得10
9秒前
彳亍而上学完成签到,获得积分10
9秒前
英俊的铭应助菲硕采纳,获得10
9秒前
勇胜发布了新的文献求助10
10秒前
hxhxhx完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4958829
求助须知:如何正确求助?哪些是违规求助? 4219775
关于积分的说明 13137750
捐赠科研通 4003142
什么是DOI,文献DOI怎么找? 2190629
邀请新用户注册赠送积分活动 1205319
关于科研通互助平台的介绍 1116818