清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Superiority Verification of Deep Learning in the Identification of Medicinal Plants: Taking Paris polyphylla var. yunnanensis as an Example

鉴定(生物学) 人工智能 支持向量机 线性判别分析 机器学习 模式识别(心理学) 深度学习 计算机科学 样品(材料) 数学 传统医学 生物 植物 医学 色谱法 化学
作者
Jiaqi Yue,WanYi Li,Yuanzhong Wang
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:12 被引量:26
标识
DOI:10.3389/fpls.2021.752863
摘要

Medicinal plants have a variety of values and are an important source of new drugs and their lead compounds. They have played an important role in the treatment of cancer, AIDS, COVID-19 and other major and unconquered diseases. However, there are problems such as uneven quality and adulteration. Therefore, it is of great significance to find comprehensive, efficient and modern technology for its identification and evaluation to ensure quality and efficacy. In this study, deep learning, which is superior to conventional identification techniques, was extended to the identification of the part and region of the medicinal plant Paris polyphylla var. yunnanensis from the perspective of spectroscopy. Two pattern recognition models, partial least squares discriminant analysis (PLS-DA) and support vector machine (SVM), were established, and the overall discrimination performance of the three types of models was compared. In addition, we also compared the effects of different sample sizes on the discriminant performance of the models for the first time to explore whether the three models had sample size dependence. The results showed that the deep learning model had absolute superiority in the identification of medicinal plant. It was almost unaffected by factors such as data type and sample size. The overall identification ability was significantly better than the PLS-DA and SVM models. This study verified the superiority of the deep learning from examples, and provided a practical reference for related research on other medicinal plants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沿途有你完成签到 ,获得积分10
3秒前
naczx完成签到,获得积分0
13秒前
Spring完成签到,获得积分10
15秒前
29秒前
29秒前
Benhnhk21发布了新的文献求助10
34秒前
36秒前
太阳花发布了新的文献求助10
39秒前
多亿点完成签到 ,获得积分10
55秒前
天天快乐应助太阳花采纳,获得10
1分钟前
1分钟前
太阳花发布了新的文献求助10
1分钟前
阿明完成签到,获得积分10
1分钟前
bo完成签到 ,获得积分10
2分钟前
灵巧的十八完成签到 ,获得积分10
2分钟前
纯情的寻绿完成签到 ,获得积分10
2分钟前
碧蓝丹烟完成签到 ,获得积分10
2分钟前
心灵美语兰完成签到 ,获得积分10
2分钟前
drughunter完成签到,获得积分10
3分钟前
vbnn完成签到 ,获得积分10
4分钟前
汉堡包应助太阳花采纳,获得10
4分钟前
4分钟前
太阳花发布了新的文献求助10
4分钟前
gyx完成签到 ,获得积分10
5分钟前
CodeCraft应助Benhnhk21采纳,获得10
5分钟前
香蕉觅云应助太阳花采纳,获得30
5分钟前
5分钟前
太阳花发布了新的文献求助30
5分钟前
5分钟前
Benhnhk21发布了新的文献求助10
5分钟前
沙海沉戈完成签到,获得积分0
5分钟前
太阳花发布了新的文献求助30
6分钟前
安琦发布了新的文献求助10
6分钟前
Benhnhk21发布了新的文献求助10
6分钟前
英俊的铭应助自然尔琴采纳,获得10
6分钟前
dashi完成签到 ,获得积分10
6分钟前
FashionBoy应助安琦采纳,获得10
7分钟前
iShine完成签到 ,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
雨后完成签到 ,获得积分10
8分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800936
求助须知:如何正确求助?哪些是违规求助? 3346489
关于积分的说明 10329439
捐赠科研通 3063031
什么是DOI,文献DOI怎么找? 1681328
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763714