已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Applying convolutional neural networks (CNN) for end-to-end soil analysis based on laser-induced breakdown spectroscopy (LIBS) with less spectral preprocessing

激光诱导击穿光谱 过度拟合 卷积神经网络 偏最小二乘回归 预处理器 化学计量学 均方误差 计算机科学 人工智能 人工神经网络 光谱学 模式识别(心理学) 数学 机器学习 生物系统 统计 物理 量子力学 生物
作者
Xuebin Xu,Fei Ma,Jianmin Zhou,Changwen Du
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:199: 107171-107171 被引量:47
标识
DOI:10.1016/j.compag.2022.107171
摘要

The high variation of raw laser-induced breakdown spectroscopy (LIBS) caused by soil heterogeneity seriously reduces the accuracy and stability of the spectral analysis. Therefore, the conventional chemometrics for spectral analysis requires seeking an appropriate spectral preprocessing by a trial-and-error method before modeling, which resulted in a mutable performance. To settle this problem, the convolutional neural network (CNN), a type of deep learning approach with the advantage of end-to-end, was applied to predict soil type and soil properties based on the non-preprocessed LIBS spectra. The results indicated, when compared to conventional partial least squares (PLS), that the CNN models presented equal classification accuracy but they decreased the root mean square error in the validation set (RMSEV) by 1.48%, 4.97%, 9.56%, 10.05%, and 2.90% for pH, soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), respectively. In addition, the CNN models performed better in preventing overfitting than the conventional PLS combined with various spectral preprocessing approaches. The multi-task of CNN models also further improved the prediction of TN due to its capacity to learn inherent structures from spectra. The sensitivity analysis of spectral variables revealed that the CNN model with the Inception module discovered both the local and high abstracted features compared with other CNN models. In conclusion, the CNN architectures showed potential to end-to-end deal with raw soil LIBS spectra.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
围城完成签到,获得积分10
1秒前
Zenglongying完成签到 ,获得积分10
2秒前
pjxxx完成签到 ,获得积分10
2秒前
Binbin完成签到 ,获得积分10
4秒前
4秒前
juju完成签到,获得积分20
5秒前
mcx关注了科研通微信公众号
8秒前
juju发布了新的文献求助10
10秒前
俭朴的听寒完成签到,获得积分10
12秒前
17秒前
21秒前
阿玲完成签到,获得积分10
25秒前
mcx发布了新的文献求助10
25秒前
安详的海风完成签到,获得积分10
26秒前
悟川完成签到 ,获得积分10
27秒前
销户完成签到 ,获得积分10
30秒前
所所应助juju采纳,获得10
32秒前
科研通AI5应助cjh采纳,获得10
35秒前
bkagyin应助六沉采纳,获得10
36秒前
Chris完成签到 ,获得积分0
36秒前
周萌完成签到 ,获得积分10
37秒前
杨zhen完成签到,获得积分10
41秒前
小田完成签到 ,获得积分10
42秒前
45秒前
kdjm688完成签到,获得积分10
46秒前
50秒前
50秒前
胡一刀完成签到,获得积分10
51秒前
零度完成签到,获得积分10
51秒前
情怀应助slm采纳,获得10
51秒前
FashionBoy应助奶昔采纳,获得30
53秒前
零度发布了新的文献求助10
54秒前
只爱吃肠粉完成签到,获得积分10
58秒前
ye完成签到,获得积分10
59秒前
ll完成签到 ,获得积分10
1分钟前
1分钟前
slm完成签到,获得积分10
1分钟前
明亮的乐驹完成签到,获得积分10
1分钟前
悦耳破茧完成签到,获得积分10
1分钟前
小黑板完成签到,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795454
求助须知:如何正确求助?哪些是违规求助? 3340477
关于积分的说明 10300344
捐赠科研通 3057032
什么是DOI,文献DOI怎么找? 1677368
邀请新用户注册赠送积分活动 805385
科研通“疑难数据库(出版商)”最低求助积分说明 762491