波束赋形
放松(心理学)
数学优化
计算机科学
最优化问题
传输(电信)
人为噪声
计算复杂性理论
发射机功率输出
约束(计算机辅助设计)
信噪比(成像)
算法
拓扑(电路)
无线
数学
物理层
发射机
电信
频道(广播)
心理学
社会心理学
几何学
组合数学
作者
Yang Wang,Weiping Shi,Mengxing Huang,Feng Shu,Jiangzhou Wang
出处
期刊:IEEE Transactions on Vehicular Technology
[Institute of Electrical and Electronics Engineers]
日期:2022-06-01
卷期号:71 (9): 10155-10160
被引量:12
标识
DOI:10.1109/tvt.2022.3179392
摘要
This paper studies a secure multiuser multiple-input single-output (MISO) communication system aided by an intelligent reflecting surface (IRS), where multiple colluding eavesdroppers (EVEs) coexist. We aim to maximize the sum secrecy rate (SSR) via jointly optimizing the beamforming vectors, the artificial noise (AN) and the phase shifts at the IRS subject to the maximum transmit power constraint and unit modulus constraints. To address the non-convex optimization problem, we first propose an alternating optimization (AO) algorithm based on semidefinite relaxation (SDR) and obtain a high-quality sub-optimal solution. In order to reduce the high computational complexity, a low-complexity alternating optimization (LC-AO) algorithm is developed, in which the beamforming vectors, AN and the IRS phase shifts are optimized alternately by the generalized power iteration (GPI) and the Riemannian manifold conjugate gradient (RMCG) algorithm, respectively. Simulation results show the advantages of deploying the IRS in improving the system secrecy performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI