The effects of urban greenway environment on recreational activities in tropical high-density Singapore: A computer vision approach

娱乐 地理 环境规划 特大城市 环境资源管理 土地利用 环境保护 区域科学 生态学 环境科学 生物
作者
Ye Zhang,Guo Xiang Ong,Zhe Jin,Choon Meng Seah,Tat-Seng Chua
出处
期刊:Urban Forestry & Urban Greening [Elsevier BV]
卷期号:75: 127678-127678 被引量:9
标识
DOI:10.1016/j.ufug.2022.127678
摘要

The urban greenway has been increasingly recognised as an important type of green infrastructure especially for land-scarce, densely-populated cities to efficiently provide their residents with continuous public spaces close to nature for recreation. Nevertheless, empirical studies on urban greenways and their recreational use rarely focus on high-density environment. Moreover, most research endeavours in this field are also largely confined to the subtropical climate, whereas much of the world's future urban growth is projected to occur in the form of high-density mega-cities in much of tropical South and Southeast Asia. In view of these gaps, this study proposes a new approach that employs Computer Vision tools to examine the effects of the greenway's physical environment on recreational activities, taking tropical Singapore as the test bed. The semantic segmentation model, PSPNet and the action detection model, ACAM are adapted and applied in conjunction with geographical information system tools to measure the greenway's physical environment and people's recreational activity at the human scale, and analyse their relationships. The result reveals a pattern that sees the clustering of different types of recreational activities at different time periods. It also reveals the relationships between recreational activities and specific environmental features, which were observed to have influenced the overall spatial distributions of the recreational activities. The finding also corroborates the design strategies for Singapore's future urban greenways and offers a reference for engaging community groups to participate in the maintenance of urban greenways.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张述杰完成签到,获得积分10
刚刚
自由的微风完成签到,获得积分10
刚刚
嘉深发布了新的文献求助10
刚刚
文静汉堡发布了新的文献求助10
刚刚
星辰大海应助荣耀采纳,获得10
1秒前
ref:rain完成签到,获得积分10
1秒前
1秒前
汉堡包应助pp采纳,获得10
1秒前
梦里花落声应助ardejiang采纳,获得10
2秒前
科研通AI5应助顺利秋灵采纳,获得10
2秒前
Zenia应助nenoaowu采纳,获得10
2秒前
馆长应助nenoaowu采纳,获得30
2秒前
小杭76应助nenoaowu采纳,获得10
2秒前
科目三应助nenoaowu采纳,获得10
3秒前
jie酱拌面应助nenoaowu采纳,获得10
3秒前
浮游应助nenoaowu采纳,获得10
3秒前
星辰大海应助nenoaowu采纳,获得10
3秒前
3秒前
Akim应助nenoaowu采纳,获得10
3秒前
香蕉觅云应助nenoaowu采纳,获得10
3秒前
科研通AI2S应助nenoaowu采纳,获得10
3秒前
晚星发布了新的文献求助10
4秒前
daker发布了新的文献求助10
4秒前
duck0008完成签到,获得积分10
4秒前
5秒前
文艺访曼发布了新的文献求助10
5秒前
bangbangsh发布了新的文献求助30
5秒前
核桃发布了新的文献求助10
6秒前
折纸发布了新的文献求助10
6秒前
yhp完成签到 ,获得积分10
7秒前
8秒前
8秒前
稳重雁菱完成签到,获得积分10
8秒前
8秒前
华仔应助cw采纳,获得10
9秒前
浮游应助葫芦娃采纳,获得10
11秒前
11秒前
嗯嗯发布了新的文献求助10
12秒前
呆萌画笔发布了新的文献求助30
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5166574
求助须知:如何正确求助?哪些是违规求助? 4358543
关于积分的说明 13570767
捐赠科研通 4205109
什么是DOI,文献DOI怎么找? 2306149
邀请新用户注册赠送积分活动 1305922
关于科研通互助平台的介绍 1252367