Effective differentiation between depressed patients and controls using discriminative eye movement features

扫视 顺利追击 眼球运动 逻辑回归 人工智能 心理学 线性判别分析 支持向量机 萧条(经济学) 二次分类器 听力学 物理医学与康复 医学 内科学 计算机科学 经济 宏观经济学
作者
Dan Zhang,Xu Liu,Lihua Xu,Yu Li,Yangyang Xu,Mengqing Xia,Zhenying Qian,Yingying Tang,Zhi Liu,Tao Chen,HaiChun Liu,Tianhong Zhang,Jijun Wang
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:307: 237-243 被引量:22
标识
DOI:10.1016/j.jad.2022.03.077
摘要

Depression is a common debilitating mental disorder caused by various factors. Identifying and diagnosing depression are challenging because the clinical evaluation of depression is mainly subjective, lacking objective and quantitative indicators. The present study investigated the value and significance of eye movement measurements in distinguishing depressed patients from controls. Ninety-five depressed patients and sixty-nine healthy controls performed three eye movement tests, including fixation stability, free-viewing, and anti-saccade tests, and eleven eye movement indexes were obtained from these tests. The independent t-test was adopted for group comparisons, and multiple logistic regression analysis was employed to identify diagnostic biomarkers. Support vector machine (SVM), quadratic discriminant analysis (QDA), and Bayesian (BYS) algorithms were applied to build the classification models. Depressed patients exhibited eye movement anomalies, characterized by increased saccade amplitude in the fixation stability test; diminished saccade velocity in the anti-saccade test; and reduced saccade amplitude, shorter scan path length, lower saccade velocity, decreased dynamic range of pupil size, and lower pupil size ratio in the free-viewing test. Four features mentioned above entered the logistic regression equation. The classification accuracies of SVM, QDA, and BYS models reached 86.0%, 81.1%, and 83.5%, respectively. Depressed patients exhibited abnormalities across multiple tests of eye movements, assisting in differentiating depressed patients from healthy controls in a cost-effective and non-invasive manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WhfeverZG完成签到,获得积分10
刚刚
刘芬发布了新的文献求助10
1秒前
wch666发布了新的文献求助10
1秒前
归海凡儿完成签到,获得积分10
1秒前
蛋妞完成签到,获得积分10
1秒前
搜集达人应助huhuhuhu采纳,获得10
1秒前
skbkbe完成签到 ,获得积分10
1秒前
hao完成签到,获得积分10
1秒前
ccyrichard完成签到,获得积分10
1秒前
北邙发布了新的文献求助30
2秒前
2秒前
Jiang发布了新的文献求助10
2秒前
2秒前
麦克阿宇发布了新的文献求助10
2秒前
认真的不评应助cnin采纳,获得10
2秒前
眯眯眼的篮球完成签到,获得积分10
3秒前
3秒前
黄浩辉完成签到,获得积分10
3秒前
3秒前
浮游应助kk采纳,获得10
3秒前
阳光若云完成签到,获得积分20
4秒前
4秒前
4秒前
4秒前
霸王龙完成签到,获得积分10
4秒前
单身的青柏完成签到 ,获得积分10
4秒前
1234发布了新的文献求助10
5秒前
有魅力的广山完成签到,获得积分10
5秒前
biu发布了新的文献求助10
5秒前
一一发布了新的文献求助10
6秒前
6秒前
廖先生发布了新的文献求助10
7秒前
DoctorSUN发布了新的文献求助10
7秒前
孔凡悦发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
wanci应助YANG采纳,获得10
7秒前
Mireyi发布了新的文献求助10
8秒前
黄浩辉发布了新的文献求助10
8秒前
rover完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4860836
求助须知:如何正确求助?哪些是违规求助? 4155688
关于积分的说明 12880512
捐赠科研通 3907254
什么是DOI,文献DOI怎么找? 2146546
邀请新用户注册赠送积分活动 1165460
关于科研通互助平台的介绍 1067626