简并能级
有界函数
物理
趋化性
焊剂(冶金)
边界(拓扑)
非线性系统
数学分析
数学
纯数学
量子力学
生物化学
化学
受体
材料科学
冶金
作者
Xinyu Tu,Chunlai Mu,Pan Zheng
标识
DOI:10.1142/s0218202522500154
摘要
We study herein the initial–boundary value problem for the flux-limited chemotaxis model with nonlinear signal production [Formula: see text] subject to no-flux boundary conditions in a ball [Formula: see text], where [Formula: see text], [Formula: see text]. For radially symmetric and positive initial data [Formula: see text], it is proved that the corresponding solution is globally bounded when [Formula: see text]. This result not only fills up a gap left in [M. Mizukami, T. Ono and T. Yokota, Extensibility criterion ruling out gradient blowup in a quasilinear degenerate chemotaxis system, J. Differ. Equ. 267(2019) 5115–5164; Y. Chiyoda, M. Mizukami and T. Yokota, Finite-time blow-up in a quasilinear degenerate chemotaxis system with flux limitation, Acta. Appl. Math. 167 (2020) 231–259] when [Formula: see text], but also extend the boundedness result from the special case [Formula: see text] to the general case [Formula: see text]. Moreover, under the condition [Formula: see text] it is shown that if [Formula: see text] is sufficiently large, then there exists initial data [Formula: see text] such that the corresponding solution blows up at finite time [Formula: see text] in the sense that [Formula: see text] This blow-up result generalizes the works for the linear signal production case in (N. Bellomo and M. Winkler, Finite-time blow-up in a degenerate chemotaxis system with flux limitation, Trans. Am. Math. Soc. Ser. B 4 (2017) 31–67; Y. Chiyoda, M. Mizukami and T. Yokota, Finite-time blow-up in a quasilinear degenerate chemotaxis system with flux limitation, Acta. Appl. Math. 167 (2020) 231–259) to the nonlinear case [Formula: see text].
科研通智能强力驱动
Strongly Powered by AbleSci AI