Self-weighted learning framework for adaptive locality discriminant analysis

地点 降维 子空间拓扑 成对比较 人工智能 线性判别分析 计算机科学 模式识别(心理学) 判别式 维数之咒 机器学习 数学 语言学 哲学
作者
Zheng Wang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:129: 108778-108778 被引量:2
标识
DOI:10.1016/j.patcog.2022.108778
摘要

Linear discriminant analysis (LDA) is one of the most important dimensionality reduction techniques and applied in many areas. However, traditional LDA algorithms aim to capture the global structure from data and ignore the local information. That may lead to the failure of LDA in some real-world datasets which have a complex geometry distribution. Although there are many previous works that focus on preserving the local information, they are all stuck in the same problem that the neighbor relationships of pairwise data points obtained from the original space may not be reliable, especially in the case of heavy noise. Therefore, we proposed a novel self-weighted learning framework, named Self-Weighted Adaptive Locality Discriminant Analysis (SALDA), for locality-aware based dimensionality reduction. The proposed framework can adaptively learn an intrinsic low-dimensional subspace, so that we can explore the better neighbor relationships for samples under the ideal subspace. In addition, our model can automatically learn to assign the weights to data pairwise points within the same class and takes no extra parameters compared to other classical locality-aware methods. At last, the experimental results on both synthetic and real-world benchmark datasets demonstrate the effectiveness and superiority of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
邓娇叶完成签到,获得积分10
刚刚
yc发布了新的文献求助10
刚刚
剑履上殿完成签到,获得积分10
刚刚
包容若风发布了新的文献求助10
1秒前
可爱的函函应助lk采纳,获得10
1秒前
2秒前
3秒前
4秒前
acetdw发布了新的文献求助10
5秒前
伍德沃德发布了新的文献求助10
5秒前
彭于晏应助北彧采纳,获得10
5秒前
英俊的铭应助yang采纳,获得10
5秒前
FashionBoy应助江南烟雨如笙采纳,获得10
5秒前
cy完成签到,获得积分10
6秒前
姚慧完成签到,获得积分10
6秒前
伊丽娜发布了新的文献求助10
6秒前
科研通AI5应助李济沧采纳,获得10
6秒前
邓娇叶发布了新的文献求助10
7秒前
包容若风完成签到,获得积分10
8秒前
8秒前
8秒前
swy完成签到,获得积分10
8秒前
8秒前
吕吕吕完成签到,获得积分10
9秒前
煜猪猪完成签到,获得积分10
9秒前
9秒前
Haibrar完成签到 ,获得积分10
10秒前
10秒前
天天快乐应助Jenny采纳,获得10
10秒前
bonita完成签到,获得积分10
11秒前
敏感初露完成签到,获得积分10
12秒前
12秒前
Jeffery发布了新的文献求助10
13秒前
21发布了新的文献求助10
13秒前
13秒前
CA274ABTFY完成签到,获得积分10
13秒前
敏感初露发布了新的文献求助10
14秒前
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
中国临床肿瘤学会(CSCO)儿童及青少年白血病诊疗指南2025 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805753
求助须知:如何正确求助?哪些是违规求助? 3350623
关于积分的说明 10349982
捐赠科研通 3066532
什么是DOI,文献DOI怎么找? 1683847
邀请新用户注册赠送积分活动 809142
科研通“疑难数据库(出版商)”最低求助积分说明 765393