反键分子轨道
法拉第效率
Atom(片上系统)
化学
联轴节(管道)
碳纤维
催化作用
线性比例尺
电化学
材料科学
电催化剂
纳米技术
化学物理
原子轨道
电极
物理化学
物理
电子
量子力学
计算机科学
嵌入式系统
复合材料
复合数
生物化学
冶金
大地测量学
地理
作者
Ying Wang,Byoung Joon Park,Vinod K. Paidi,Rui Huang,Yechan Lee,Kyung‐Jong Noh,Kug‐Seung Lee,Jeong Woo Han
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2022-01-14
卷期号:7 (2): 640-649
被引量:204
标识
DOI:10.1021/acsenergylett.1c02446
摘要
Electrochemical reduction of CO2 (CO2RR) provides an attractive pathway to achieve a carbon-neutral energy cycle. Single-atom catalysts (SAC) have shown unique potential in heterogeneous catalysis, but their structural simplicity prevents them from breaking linear scaling relationships. In this study, we develop a feasible strategy to precisely construct a series of electrocatalysts featuring well-defined single-atom and dual-site iron anchored on nitrogen-doped carbon matrix (Fe1–N–C and Fe2–N–C). The Fe2–N–C dual-atom electrocatalyst (DAC) achieves enhanced CO Faradaic efficiency above 80% in wider applied potential ranges along with higher turnover frequency (26,637 h–1) and better durability compared to SAC counterparts. Furthermore, based on in-depth experimental and theoretical analysis, the orbital coupling between the iron dual sites decreases the energy gap between antibonding and bonding states in *CO adsorption. This research presents new insights into the structure–performance relationship on CO2RR electrocatalysts at the atomic scale and extends the application of DACs for heterogeneous electrocatalysis and beyond.
科研通智能强力驱动
Strongly Powered by AbleSci AI