已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of interface of geological formations using generalized additive model

钻孔 区间(图论) 地质学 置信区间 特征(语言学) 数据挖掘 预测建模 广义加性模型 计算机科学 统计 岩土工程 数学 机器学习 语言学 哲学 组合数学
作者
Xinxin Qi,Zhiyong Yang,Jian Chu
出处
期刊:Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards [Taylor & Francis]
卷期号:16 (1): 127-139 被引量:1
标识
DOI:10.1080/17499518.2022.2028847
摘要

Geological information such as geological interfaces is important for the design of underground excavation and supporting measures. This in turn requires a method to predict accurately the locations of geological interfaces for the gap areas between boreholes. This study presents a generalized additive model (GAM) to predict the location of the geological interfaces. The performance of the GAM method is evaluated using both simulated data and borehole data for the determination of rockhead in two different geological formations in Singapore. The results show that the GAM method can provide a reasonable confidence interval (CI) of the mean trend and the prediction interval (PI) in the sense that the 95% CI covers about 95% of the actual mean curve while the 95% PI covers around 95% of testing data. Furthermore, the geological complexity can be well reflected as the prediction uncertainty in the geologically complex area is larger than that in the geologically regular area. More importantly, the users can impose prior information or personal judgment regarding the shape of the geological profile on the model. This is an important feature to enable further improvement in the accuracy of the prediction.Highlights A generalized additive model is used to predict the location of the geological interfacesThe performance of the GAM method is evaluated using both simulated data and actual borehole data from SingaporeThe results show that the GAM method can provide a reasonable confidence interval of the mean trend and the prediction interval of a predictionGeological complexity can be well reflected in the sense that the prediction uncertainty in the geologically complex area is relatively largeExpert judgment or knowledge on the geological profile can be applied to the model, which improves the prediction accuracy
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuke发布了新的文献求助10
5秒前
taotao完成签到,获得积分10
9秒前
C9完成签到 ,获得积分10
9秒前
华仔应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得30
11秒前
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
yuandashazi应助yuke采纳,获得10
12秒前
13秒前
不能随便完成签到,获得积分10
14秒前
LJL完成签到 ,获得积分10
15秒前
chujun_cai完成签到 ,获得积分10
16秒前
HarbinDing发布了新的文献求助10
16秒前
17秒前
19秒前
饱满跳跳糖完成签到,获得积分10
20秒前
姚慧知完成签到 ,获得积分10
24秒前
无花果应助俏皮的以晴采纳,获得10
26秒前
劳健龙完成签到 ,获得积分10
34秒前
Perion完成签到 ,获得积分10
34秒前
ZM完成签到 ,获得积分10
38秒前
47秒前
Friday完成签到,获得积分20
48秒前
51秒前
Friday发布了新的文献求助10
52秒前
56秒前
天真冷安完成签到,获得积分10
56秒前
tiantian完成签到,获得积分10
57秒前
吴嘉俊完成签到 ,获得积分10
57秒前
今后应助猪猪侠采纳,获得10
58秒前
田様应助Friday采纳,获得10
59秒前
1分钟前
tiantian发布了新的文献求助10
1分钟前
YifanWang应助天真冷安采纳,获得20
1分钟前
完美世界应助猪猪侠采纳,获得10
1分钟前
顾矜应助猪猪侠采纳,获得10
1分钟前
cy驳回了英姑应助
1分钟前
Andy_Cheung应助猪猪侠采纳,获得10
1分钟前
领导范儿应助猪猪侠采纳,获得10
1分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4091264
求助须知:如何正确求助?哪些是违规求助? 3630014
关于积分的说明 11507374
捐赠科研通 3341666
什么是DOI,文献DOI怎么找? 1836865
邀请新用户注册赠送积分活动 904756
科研通“疑难数据库(出版商)”最低求助积分说明 822528