已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Novel Clinical Biomarkers for Drug-Induced Liver Injury

生物标志物发现 生物标志物 医学 药物开发 重症监护医学 药品 药物发现 临床意义 生物信息学 病理 药理学 蛋白质组学 生物 生物化学 基因
作者
Youhao Chen,Shaoxing Guan,Yanping Guan,Siyuan Tang,Yanying Zhou,Xueding Wang,Huichang Bi,Min Huang
出处
期刊:Drug Metabolism and Disposition [American Society for Pharmacology and Experimental Therapeutics]
卷期号:50 (5): 671-684 被引量:10
标识
DOI:10.1124/dmd.121.000732
摘要

Drug-induced liver injury (DILI) remains a critical clinical issue and has been a treatment challenge today as it was in the past. However, the traditional biomarkers or indicators are insufficient to predict the risks and outcome of patients with DILI due to its poor specificity and sensitivity. Recently, the development of high-throughput technologies, especially omics and multiomics has sparked growing interests in identification of novel clinical DILI biomarkers, many of which also provide a mechanistic insight. Accordingly, in this minireview, we summarize recent advances in novel clinical biomarkers for DILI prediction, diagnosis, and prognosis and highlight the limitations or challenges involved in biomarker discovery or its clinical translation. Although huge work has been done, most reported biomarkers lack comprehensive information and more specific DILI biomarkers are still needed to complement the traditional biomarkers such as alanine aminotransferase (ALT) or aspartate transaminase (AST) in clinical decision-making.

SIGNIFICANCE STATEMENT

This current review outlines an overview of novel clinical biomarkers for drug-induced liver injury (DILI) identified in clinical retrospective or prospective clinical analysis. Many of these biomarkers provide a mechanistic insight and are promising to complement the traditional DILI biomarkers. This work also highlights the limitations or challenges involved in biomarker discovery or its clinical translation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
和谐的柠檬完成签到,获得积分10
2秒前
矢思然完成签到,获得积分10
5秒前
6秒前
pegasus0802完成签到,获得积分10
6秒前
chen发布了新的文献求助10
8秒前
mkljl完成签到 ,获得积分10
9秒前
王冠军发布了新的文献求助10
10秒前
18秒前
比巴卜完成签到 ,获得积分10
18秒前
小禾一定行完成签到 ,获得积分10
20秒前
Chen完成签到 ,获得积分10
20秒前
21秒前
隐形曼青应助zc采纳,获得10
23秒前
fan发布了新的文献求助10
23秒前
斑鸠津发布了新的文献求助10
24秒前
王冠军完成签到,获得积分10
25秒前
斑鸠津完成签到,获得积分10
29秒前
Lucky.完成签到 ,获得积分0
29秒前
汉堡包应助fan采纳,获得10
31秒前
田文强完成签到 ,获得积分10
31秒前
34秒前
zc完成签到,获得积分10
35秒前
DrSong完成签到,获得积分10
35秒前
zc发布了新的文献求助10
37秒前
37秒前
Ji完成签到,获得积分10
39秒前
芜湖起飞完成签到 ,获得积分10
40秒前
40秒前
42秒前
wang发布了新的文献求助30
42秒前
44秒前
wanci应助成功人士采纳,获得10
47秒前
MeLy123发布了新的文献求助10
48秒前
沉静的雁菡完成签到,获得积分10
49秒前
我是老大应助alexzlmmd采纳,获得10
49秒前
吕如音发布了新的文献求助10
50秒前
xiaojuexian完成签到,获得积分10
50秒前
wang完成签到,获得积分10
51秒前
orixero应助003采纳,获得20
52秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830364
求助须知:如何正确求助?哪些是违规求助? 3372779
关于积分的说明 10475071
捐赠科研通 3092507
什么是DOI,文献DOI怎么找? 1702105
邀请新用户注册赠送积分活动 818797
科研通“疑难数据库(出版商)”最低求助积分说明 771087