Feature selection based on rough sets and particle swarm optimization

粗集 粒子群优化 渡线 特征选择 特征(语言学) 启发式 选择(遗传算法) 锦标赛选拔 数学优化 计算机科学 群体行为 集合(抽象数据类型) 算法 数学 人工智能
作者
Xiangyang Wang,Jie Yang,Xiaolong Teng,Weijun Xia,Richard Jensen
出处
期刊:Pattern Recognition Letters [Elsevier BV]
卷期号:28 (4): 459-471 被引量:732
标识
DOI:10.1016/j.patrec.2006.09.003
摘要

We propose a new feature selection strategy based on rough sets and particle swarm optimization (PSO). Rough sets have been used as a feature selection method with much success, but current hill-climbing rough set approaches to feature selection are inadequate at finding optimal reductions as no perfect heuristic can guarantee optimality. On the other hand, complete searches are not feasible for even medium-sized datasets. So, stochastic approaches provide a promising feature selection mechanism. Like Genetic Algorithms, PSO is a new evolutionary computation technique, in which each potential solution is seen as a particle with a certain velocity flying through the problem space. The Particle Swarms find optimal regions of the complex search space through the interaction of individuals in the population. PSO is attractive for feature selection in that particle swarms will discover best feature combinations as they fly within the subset space. Compared with GAs, PSO does not need complex operators such as crossover and mutation, it requires only primitive and simple mathematical operators, and is computationally inexpensive in terms of both memory and runtime. Experimentation is carried out, using UCI data, which compares the proposed algorithm with a GA-based approach and other deterministic rough set reduction algorithms. The results show that PSO is efficient for rough set-based feature selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jhz发布了新的文献求助10
刚刚
加百莉发布了新的文献求助10
刚刚
YZMING完成签到,获得积分10
1秒前
无题完成签到,获得积分10
1秒前
丘比特应助高不二采纳,获得10
3秒前
LingYing发布了新的文献求助10
3秒前
3秒前
李健的粉丝团团长应助YUMI采纳,获得10
3秒前
Akim应助整齐的小霜采纳,获得10
4秒前
起风了完成签到,获得积分10
5秒前
5秒前
拼搏的小蚂蚁完成签到 ,获得积分10
5秒前
一川烟叶发布了新的文献求助10
8秒前
阿飞完成签到,获得积分10
8秒前
乐乐应助jhz采纳,获得10
8秒前
8秒前
CodeCraft应助文雨采纳,获得10
10秒前
大力的向日葵完成签到,获得积分10
11秒前
ffffffflzx666发布了新的文献求助10
13秒前
情怀应助义气的巨人采纳,获得10
14秒前
小白菜发布了新的文献求助10
19秒前
19秒前
Hello应助欣欣采纳,获得10
19秒前
21秒前
英勇的沛春完成签到 ,获得积分10
22秒前
啦啦啦啦发布了新的文献求助10
24秒前
吴帆完成签到 ,获得积分10
26秒前
思思贪念念完成签到,获得积分10
27秒前
亦犹未进发布了新的文献求助10
28秒前
李健的粉丝团团长应助DDD采纳,获得10
29秒前
121完成签到,获得积分10
34秒前
39秒前
bkagyin应助121采纳,获得10
40秒前
谷粱初晴发布了新的文献求助10
42秒前
DDD发布了新的文献求助10
42秒前
高yq完成签到,获得积分20
45秒前
李爱国应助Aloysia采纳,获得10
46秒前
46秒前
光之霓裳完成签到 ,获得积分10
46秒前
47秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
Commercial production of mevalonolactone by fermentation and the application to skin cosmetics with anti-aging effect 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3930001
求助须知:如何正确求助?哪些是违规求助? 3475109
关于积分的说明 10985028
捐赠科研通 3205127
什么是DOI,文献DOI怎么找? 1770981
邀请新用户注册赠送积分活动 858878
科研通“疑难数据库(出版商)”最低求助积分说明 796853