高光谱成像
光谱成像
全光谱成像
像素
计算机科学
人工智能
化学成像
图像分辨率
维数(图论)
模式识别(心理学)
拉曼光谱
光谱分辨率
主成分分析
样品(材料)
计算机视觉
遥感
光学
数学
化学
物理
地质学
谱线
天文
色谱法
纯数学
作者
Miloš D. Miljković,T. V. Chernenko,Melissa Romeo,Benjamin Bird,Christian Matthäus,Max Diem
出处
期刊:Analyst
[The Royal Society of Chemistry]
日期:2010-01-01
卷期号:135 (8): 2002-2002
被引量:165
摘要
Raman microspectroscopy-based, label-free imaging methods for human cells at sub-micrometre spatial resolution are presented. Since no dyes or labels are used in this imaging modality, the pixel-to-pixel spectral variations are small and multivariate methods of analysis need to be employed to convert the hyperspectral datasets to spectral images. Thus, the main emphasis of this paper is the introduction and comparison of a number of multivariate image reconstruction methods. The resulting Raman spectral imaging methodology directly utilizes the spectral contrast provided by small (bio)chemical compositional changes over the spatial dimension of the sample to construct images that can rival fluorescence images in terms of spatial information, yet without the use of any external dye or label.
科研通智能强力驱动
Strongly Powered by AbleSci AI