Copper Cobalt Sulfide Nanosheets Realizing a Promising Electrocatalytic Oxygen Evolution Reaction

过电位 电催化剂 塔菲尔方程 析氧 化学工程 硫化钴 材料科学 X射线光电子能谱 化学 无机化学 电化学 电极 物理化学 工程类
作者
Meenakshi Chauhan,Kasala Prabhakar Reddy,Chinnakonda S. Gopinath,Sasanka Deka
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:7 (9): 5871-5879 被引量:508
标识
DOI:10.1021/acscatal.7b01831
摘要

Nanostructured CuCo2S4, a mixed metal thiospinel, is found to be a benchmark electrocatalyst for oxygen evolution reaction (OER) in this study with a low overpotential, a low Tafel slope, a high durability, and a high turnover frequency (TOF) at lower mass loadings. Nanosheets of CuCo2S4 are realized from a hydrothermal synthesis method in which the average thickness of the sheets is found to be in the range of 8–15 nm. Aggregated nanosheets form a highly open hierarchical structure. When used as an electrocatalyst, CuCo2S4 nanosheets offer an overpotential value of 310 mV at a 10 mA cm–2 current density, which remains consistent for 10000 measured cycles in a 1 M KOH electrolyte. A chronoamperometric study reveals constant oxygen evolution for 12 h at a 10 mV s–1 scan rate without any degradation of the activity. Furthermore, the calculated mass activity of the CuCo2S4 electrocatalyst is found to be 14.29 A/g and to afford a TOF value of 0.1431 s–1 at 310 mV at a mass loading of 0.7 mg cm–2. For comparison, nanostructures of Co3S4 and Cu0.5Co2.5S4 have been synthesized using a similar method followed for CuCo2S4. When compared to the OER activities among these three thiospinels and standard IrO2, CuCo2S4 nanosheets offered the highest OER activities at the same mass loading (0.7 mg/cm2). Extensive X-ray photoelectron spectroscopy and electron paramagnetic resonance analyses for a mechanistic study reveal that introduction of Cu into the Co3S4 lattice enhances the oxygen evolution and kinetics by offering Cu2+ sites for utilitarian adsorption of OH, O, and OOH reactive species and also by offering a highly active high-spin state of octahedral Co3+ for OER catalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
am发布了新的文献求助10
1秒前
1秒前
乐乐应助CHL5722采纳,获得10
1秒前
邓佳鑫Alan应助iiLI采纳,获得10
1秒前
2秒前
2秒前
放放发布了新的文献求助10
2秒前
2秒前
长安完成签到,获得积分20
2秒前
彭于晏应助卖萌的秋田采纳,获得10
3秒前
4秒前
4秒前
4秒前
孙温柔完成签到,获得积分10
4秒前
5秒前
5秒前
赘婿应助YM采纳,获得10
5秒前
5秒前
5秒前
张11发布了新的文献求助10
6秒前
如意完成签到,获得积分10
6秒前
顺利秋灵发布了新的文献求助10
7秒前
7秒前
尼克拉倒完成签到,获得积分10
7秒前
Ava应助HUYAOWEI采纳,获得10
8秒前
韩麒嘉完成签到 ,获得积分10
8秒前
yangph发布了新的文献求助10
8秒前
研究新人发布了新的文献求助10
8秒前
8秒前
jg完成签到,获得积分10
9秒前
9秒前
joysel完成签到,获得积分10
9秒前
万能图书馆应助_七采纳,获得10
10秒前
10秒前
10秒前
10秒前
10秒前
ZHONGJIAHAO发布了新的文献求助10
10秒前
可研小冲发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656374
求助须知:如何正确求助?哪些是违规求助? 4803112
关于积分的说明 15075686
捐赠科研通 4814650
什么是DOI,文献DOI怎么找? 2575863
邀请新用户注册赠送积分活动 1531210
关于科研通互助平台的介绍 1489805