The art of modelling range-shifting species

外推法 物种分布 航程(航空) 计算机科学 气候变化 环境生态位模型 计量经济学 生态学 环境科学 机器学习 统计 生物 数学 栖息地 生态位 复合材料 材料科学
作者
Jane Elith,Michael R. Kearney,Steven J. Phillips
出处
期刊:Methods in Ecology and Evolution [Wiley]
卷期号:1 (4): 330-342 被引量:1911
标识
DOI:10.1111/j.2041-210x.2010.00036.x
摘要

1. Species are shifting their ranges at an unprecedented rate through human transportation and environmental change. Correlative species distribution models (SDMs) are frequently applied for predicting potential future distributions of range-shifting species, despite these models’ assumptions that species are at equilibrium with the environments used to train (fit) the models, and that the training data are representative of conditions to which the models are predicted. Here we explore modelling approaches that aim to minimize extrapolation errors and assess predictions against prior biological knowledge. Our aim was to promote methods appropriate to range-shifting species. 2. We use an invasive species, the cane toad in Australia, as an example, predicting potential distributions under both current and climate change scenarios. We use four SDM methods, and trial weighting schemes and choice of background samples appropriate for species in a state of spread. We also test two methods for including information from a mechanistic model. Throughout, we explore graphical techniques for understanding model behaviour and reliability, including the extent of extrapolation. 3. Predictions varied with modelling method and data treatment, particularly with regard to the use and treatment of absence data. Models that performed similarly under current climatic conditions deviated widely when transferred to a novel climatic scenario. 4. The results highlight problems with using SDMs for extrapolation, and demonstrate the need for methods and tools to understand models and predictions. We have made progress in this direction and have implemented exploratory techniques as new options in the free modelling software, MaxEnt. Our results also show that deliberately controlling the fit of models and integrating information from mechanistic models can enhance the reliability of correlative predictions of species in non-equilibrium and novel settings. 5. Implications. The biodiversity of many regions in the world is experiencing novel threats created by species invasions and climate change. Predictions of future species distributions are required for management, but there are acknowledged problems with many current methods, and relatively few advances in techniques for understanding or overcoming these. The methods presented in this manuscript and made accessible in MaxEnt provide a forward step.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
XavierLee发布了新的文献求助10
刚刚
科研通AI5应助Stringgggg采纳,获得10
1秒前
1秒前
彭于晏应助丫丫采纳,获得10
1秒前
Nana完成签到,获得积分10
2秒前
Hello应助咖啡机检查佛破采纳,获得10
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
coconut完成签到 ,获得积分10
3秒前
网上飞完成签到,获得积分10
4秒前
小米粥完成签到,获得积分10
4秒前
超级小狗发布了新的文献求助10
4秒前
XU完成签到,获得积分20
4秒前
荼靡落时完成签到,获得积分10
4秒前
聪明的傲白完成签到,获得积分10
6秒前
木目丶发布了新的文献求助10
6秒前
晓兴兴完成签到,获得积分10
6秒前
6秒前
甜晞发布了新的文献求助10
7秒前
兮兮发布了新的文献求助10
7秒前
cheng完成签到,获得积分10
7秒前
7秒前
zdq10068发布了新的文献求助10
7秒前
咕噜咕噜发布了新的文献求助10
7秒前
充电宝应助孤独的寻双采纳,获得10
8秒前
8秒前
8秒前
江峰发布了新的文献求助10
9秒前
9秒前
wendinfgmei完成签到,获得积分10
9秒前
迢迢万里完成签到 ,获得积分10
9秒前
10秒前
细心不评完成签到,获得积分10
10秒前
wu完成签到,获得积分10
10秒前
暖阳完成签到,获得积分10
10秒前
10秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785225
求助须知:如何正确求助?哪些是违规求助? 3330781
关于积分的说明 10248184
捐赠科研通 3046175
什么是DOI,文献DOI怎么找? 1671900
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868