马尔科夫蒙特卡洛
吉布斯抽样
计算机科学
马尔可夫链
贝叶斯推理
数学
算法
重要性抽样
应用数学
蒙特卡罗方法
数学优化
贝叶斯概率
人工智能
机器学习
统计
作者
Robert L. Strawderman,Dani Gamerman
摘要
Introduction Stochastic simulation Introduction Generation of Discrete Random Quantities Generation of Continuous Random Quantities Generation of Random Vectors and Matrices Resampling Methods Exercises Bayesian Inference Introduction Bayes' Theorem Conjugate Distributions Hierarchical Models Dynamic Models Spatial Models Model Comparison Exercises Approximate methods of inference Introduction Asymptotic Approximations Approximations by Gaussian Quadrature Monte Carlo Integration Methods Based on Stochastic Simulation Exercises Markov chains Introduction Definition and Transition Probabilities Decomposition of the State Space Stationary Distributions Limiting Theorems Reversible Chains Continuous State Spaces Simulation of a Markov Chain Data Augmentation or Substitution Sampling Exercises Gibbs Sampling Introduction Definition and Properties Implementation and Optimization Convergence Diagnostics Applications MCMC-Based Software for Bayesian Modeling Appendix 5.A: BUGS Code for Example 5.7 Appendix 5.B: BUGS Code for Example 5.8 Exercises Metropolis-Hastings algorithms Introduction Definition and Properties Special Cases Hybrid Algorithms Applications Exercises Further topics in MCMC Introduction Model Adequacy Model Choice: MCMC Over Model and Parameter Spaces Convergence Acceleration Exercises References Author Index Subject Index
科研通智能强力驱动
Strongly Powered by AbleSci AI