亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

In-Silico Extraction of Design Ideas Using MMPA-by-QSAR and its Application on ADME Endpoints

生物信息学 广告 数量结构-活动关系 计算机科学 萃取(化学) 生化工程 计算生物学 化学 机器学习 药理学 生物 色谱法 工程类 药品 生物化学 基因
作者
Alexios Koutsoukas,George Chang,Christopher Keefer
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:59 (1): 477-485 被引量:13
标识
DOI:10.1021/acs.jcim.8b00520
摘要

Matched molecular pair analysis (MMPA) has emerged as a powerful approach to mine and extract tacit knowledge from measured databases of small molecules. Extracted knowledge from past experimentation can assist future lead optimization as an idea generation tool and, hence, reduce the number of design-synthesis-test cycles. While attractive and intuitive, MMPA still presents several limitations. Analyses of internal absorption, distribution, metabolism, and excretion (ADME) databases of measured compounds show that chemical transformations with 10 pairs or more represent less than 1% of the total transforms identified by MMPA. A great wealth of design ideas remains effectively untapped and underutilized as the lack of measured data hinders extraction of robust trends. In this study we report the use of a quantitative structure-activity relationship (QSAR) model augmented MMPA approach (MMPA-by-QSAR) to infer the overall effect of chemical transformations on two essential ADME endpoints-lipophilicity and metabolic clearance. First, QSAR models are employed to predict compound activities, and subsequently, MMPA is used to identify and to extract virtual trends. Results obtained from retrospective analyses showed the ability to predict magnitudes of change close to experimental ones for the majority of transforms from each ADME data set. In the case of the lipophilicity endpoint (SFLogD) 73.7%, 87.85%, and 99% of transforms were predicted within 0.1, 0.15, and 0.3 units of the actual change. In the case of the clearance endpoint (HLM) 67.2%, 82.3%, and 99.5% of transforms were predicted within 0.08, 0.11, and 0.3 log units, respectively. Prospective application of MMPA-by-QSAR on untested compounds identified several novel transforms not observed in our measured data sets. When MMPs from these transforms were screened in our internal assays, it was found that the correct directionality of change was predicted for all but one of the tested transforms, and the predicted magnitudes of change have varying errors between predicted and measured mean changes ranging from 0.01 to 0.24 units for SFLogD and from 0.0 to 0.38 log units for HLM. This proposed MMPA-by-QSAR modeling approach has the potential to allow exploration of infrequent transforms or even identify completely novel transforms where no measured MMP is available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唐唐完成签到 ,获得积分10
15秒前
inRe发布了新的文献求助10
20秒前
ajing完成签到,获得积分10
35秒前
Z1完成签到,获得积分10
47秒前
水牛完成签到,获得积分10
48秒前
魔幻的芳完成签到,获得积分10
48秒前
火星上的宝马完成签到,获得积分10
51秒前
54秒前
悲凉的忆南完成签到,获得积分10
54秒前
迷路的台灯完成签到 ,获得积分10
55秒前
57秒前
陈旧完成签到,获得积分10
58秒前
陈乔乔完成签到 ,获得积分10
58秒前
姜姗完成签到 ,获得积分10
1分钟前
1分钟前
欣欣子完成签到,获得积分10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
Ting完成签到 ,获得积分10
1分钟前
sunstar完成签到,获得积分10
1分钟前
yxl完成签到,获得积分10
1分钟前
Criminology34应助周周周周周采纳,获得10
1分钟前
可耐的盈完成签到,获得积分10
1分钟前
绿毛水怪完成签到,获得积分10
1分钟前
桦奕兮完成签到 ,获得积分10
1分钟前
lsc完成签到,获得积分10
1分钟前
爆米花应助inRe采纳,获得10
1分钟前
小fei完成签到,获得积分10
1分钟前
麻辣薯条完成签到,获得积分10
1分钟前
星辰大海应助周周周周周采纳,获得10
1分钟前
时尚身影完成签到,获得积分10
1分钟前
流苏完成签到,获得积分10
1分钟前
流苏2完成签到,获得积分10
1分钟前
zachary009完成签到 ,获得积分10
1分钟前
华仔应助微醺潮汐采纳,获得10
1分钟前
辛勤的傲易完成签到 ,获得积分10
1分钟前
我是老大应助包李采纳,获得10
1分钟前
fuwei完成签到,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628142
求助须知:如何正确求助?哪些是违规求助? 4715835
关于积分的说明 14963746
捐赠科研通 4785838
什么是DOI,文献DOI怎么找? 2555367
邀请新用户注册赠送积分活动 1516685
关于科研通互助平台的介绍 1477226