已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

In-Silico Extraction of Design Ideas Using MMPA-by-QSAR and its Application on ADME Endpoints

生物信息学 广告 数量结构-活动关系 计算机科学 萃取(化学) 生化工程 计算生物学 化学 机器学习 药理学 生物 色谱法 工程类 药品 生物化学 基因
作者
Alexios Koutsoukas,George Chang,Christopher Keefer
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:59 (1): 477-485 被引量:10
标识
DOI:10.1021/acs.jcim.8b00520
摘要

Matched molecular pair analysis (MMPA) has emerged as a powerful approach to mine and extract tacit knowledge from measured databases of small molecules. Extracted knowledge from past experimentation can assist future lead optimization as an idea generation tool and, hence, reduce the number of design-synthesis-test cycles. While attractive and intuitive, MMPA still presents several limitations. Analyses of internal absorption, distribution, metabolism, and excretion (ADME) databases of measured compounds show that chemical transformations with 10 pairs or more represent less than 1% of the total transforms identified by MMPA. A great wealth of design ideas remains effectively untapped and underutilized as the lack of measured data hinders extraction of robust trends. In this study we report the use of a quantitative structure-activity relationship (QSAR) model augmented MMPA approach (MMPA-by-QSAR) to infer the overall effect of chemical transformations on two essential ADME endpoints-lipophilicity and metabolic clearance. First, QSAR models are employed to predict compound activities, and subsequently, MMPA is used to identify and to extract virtual trends. Results obtained from retrospective analyses showed the ability to predict magnitudes of change close to experimental ones for the majority of transforms from each ADME data set. In the case of the lipophilicity endpoint (SFLogD) 73.7%, 87.85%, and 99% of transforms were predicted within 0.1, 0.15, and 0.3 units of the actual change. In the case of the clearance endpoint (HLM) 67.2%, 82.3%, and 99.5% of transforms were predicted within 0.08, 0.11, and 0.3 log units, respectively. Prospective application of MMPA-by-QSAR on untested compounds identified several novel transforms not observed in our measured data sets. When MMPs from these transforms were screened in our internal assays, it was found that the correct directionality of change was predicted for all but one of the tested transforms, and the predicted magnitudes of change have varying errors between predicted and measured mean changes ranging from 0.01 to 0.24 units for SFLogD and from 0.0 to 0.38 log units for HLM. This proposed MMPA-by-QSAR modeling approach has the potential to allow exploration of infrequent transforms or even identify completely novel transforms where no measured MMP is available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyy完成签到 ,获得积分10
1秒前
浅辰完成签到 ,获得积分10
2秒前
3秒前
aging123完成签到,获得积分10
4秒前
4秒前
aging123发布了新的文献求助10
7秒前
安雯发布了新的文献求助10
7秒前
Zzzzzzzz关注了科研通微信公众号
7秒前
企鹅发布了新的文献求助20
10秒前
梅西完成签到 ,获得积分10
12秒前
18秒前
22秒前
大意的绿蓉完成签到,获得积分10
22秒前
gost发布了新的文献求助10
23秒前
24秒前
25秒前
25秒前
Jeffery完成签到,获得积分10
27秒前
greentea完成签到,获得积分10
28秒前
28秒前
Jeffery发布了新的文献求助10
29秒前
CipherSage应助企鹅采纳,获得10
30秒前
君看一叶舟完成签到 ,获得积分10
30秒前
韭黄发布了新的文献求助10
31秒前
gyh发布了新的文献求助10
31秒前
科目三应助韭黄采纳,获得10
36秒前
苗条白枫完成签到 ,获得积分10
36秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
小蘑菇应助科研通管家采纳,获得10
37秒前
wanci应助科研通管家采纳,获得10
38秒前
科研通AI5应助科研通管家采纳,获得10
38秒前
猪猪hero应助科研通管家采纳,获得10
38秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
38秒前
随遇而安应助科研通管家采纳,获得10
38秒前
科研通AI5应助肖珍珠采纳,获得10
38秒前
Hxq关闭了Hxq文献求助
39秒前
shen完成签到 ,获得积分10
39秒前
小鱼儿完成签到 ,获得积分10
40秒前
keira发布了新的文献求助10
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778969
求助须知:如何正确求助?哪些是违规求助? 3324631
关于积分的说明 10219057
捐赠科研通 3039619
什么是DOI,文献DOI怎么找? 1668356
邀请新用户注册赠送积分活动 798646
科研通“疑难数据库(出版商)”最低求助积分说明 758440